Журналы →  Obogashchenie Rud →  2021 →  №3 →  Назад

BENEFICIATION PROCESSES
Название Digital technology for optimizing the sodium sulphide dosage during copper ore flotation
DOI 10.17580/or.2021.03.04
Автор Mashevskiy G. N., Ushakov E. K., Yakovleva T. A.
Информация об авторе

MEK-Mining (St. Petersburg, Russia):

Mashevskiy G. N., Chief Process Engineer, gennadii.mashevskii@mekgroup.ru

 

St. Petersburg Mining University (St. Petersburg, Russia):
Ushakov E. K., Postgraduate Student, s195065@stud.spmi.ru
Yakovleva T. A., Postgraduate Student, s205060@stud.spmi.ru

Реферат

The article analyzes an advanced methodological approach to optimizing reagent flotation regimes during dressability studies for mineral raw materials. This paper studies the electrochemical processes occurring directly in the flotation slurry. In the course of laboratory experiments, the multifunctional effect of sodium sulfide during the flotation of off-balance ore of the Zhezkazgan ore field was studied. The use of the initial multifactorial matrices enabled the subsequent application of digital technologies, which, in turn, made it possible to improve the process indicators for the raw materials studied. It has been shown that the information space required for the implementation of digital technologies may be formed through the application of advanced ionometry methods. With the use of neural network modeling to monitor the electrochemical parameters of the slurry during flotation of copper ore of the Zhezkazgan ore field, it has been found that optimized sodium sulfide supply plays a decisive role in achieving high copper recovery, provided that the potential of the argentite electrode has been stabilized at the level of –450 mV when preparing the slurry before the flotation. The high reliability of the neural network model confirms the effectiveness of the original multifactorial matrices for use in laboratory tests. Due to the high accuracy of the resulting model, the optimal operating process parameters may be found.

Ключевые слова Flotation, sodium sulfide, copper ore, ionometry, neural network modeling, digital technologies
Библиографический список

1. Arustamyan A. M., Mashevskiy G. N. Neural network model of the process of copper-molybdenum ores flotation. Mining science: a collection of scientific papers. Dedicated to the 25th anniversary of the North-Western Branch of the Academy of Mining Sciences. St. Petersburg: GEOMEKH, 2019. pp. 174–186.
2. Beriashvili A. T., Pikulina V. M. A new approach to solving the problem of variable copper recovery on the example of the Zhezkazgan ore field. Obogashchenie Rud. 2018. No. 5. pp. 40–44. DOI: 10.17580/or.2018.05.07.
3. Vaisberg L. A., Kononov O. V., Ustinov I. D. Fundamentals of geometallurgy. St. Petersburg: Russkaya Kollektsiya, 2020. 376 p.
4. Lipton I. Geometallurgy as an approach — the cornerstone of large-scale mine optimization. Zoloto i Tekhnologii. 2018. No. 3. pp. 50–51.
4. Vaisberg L. A., Ustinov I. D. Introduction to the technology of minerals separation. St. Petersburg: Russkaya Kollektsiya, 2019. 168 p.
6. Mashevsky G. N., Petrov A. V., Romanenko S. A., Sufyanov F. S. Development of ore types processing classification principles on the basis of flotation process parameters control and neural network modeling. Obogashchenie Rud. 2012. No. 4. pp. 36–42.
7. Electronic textbook on statistics. Moscow: StatSoft, 2012. URL: http://statsoft.ru/home/textbook/default.htm (accessed: 20.04.2021).
8. Aleksandrova T. N., O’Connor C. Processing of platinum group metal ores in Russia and south Africa: Current state and prospects. Journal of Mining Institute. 2020. Vol. 244, Iss. 4. pp. 462–473.
9. Aleksandrova T. N., Nikolaeva N. V., Lvov V. V., Romashev A. O. Ore processing efficiency improvements for precious metals based on process simulations. Obogashchenie Rud. 2019. No. 2. pp. 8–13. DOI: 10.17580/or.2019.02.02.
10. Balatovic M. Handbook of flotation reagents: Chemistry, theory and practice. Flotation of sulfide ores. Elsevier, 2007. pp. 282–291.
11. Napier-Munn T. J. Statistical methods for mineral engineers — How to design experiments and analyse data. Queensland, Australia: Julius Kruttschnitt Mineral Research Centre, 2014. 627 p.
12. Foucaud Y., Filippova I. V., Filippov L. O. Investigation of the depressants involved in the selective flotation of scheelite from apatite, fluorite, and calcium silicates: Focus on the sodium silicate/sodium carbonate system. Powder Technology. 2019. Vol. 352. pp. 501–512.
13. Zhang Q., Wen S., Feng Q., Zhang S. Surface characterization of azurite modified with sodium sulfide and its response to flotation mechanism. Separation and Purification Technology. 2020. Vol. 242. DOI: 10.1016/j.seppur.2020.116760.
14. Zhao Q., Liu W., Wei D., Wang W., Cui B., Liu W. Effect of copper ions on the flotation separation of chalcopyrite and molybdenite using sodium sulfide as a depressant. Minerals Engineering. 2018. Vol. 115. pp. 44–52.

Language of full-text русский
Полный текст статьи Получить
Назад