Journals →  Gornyi Zhurnal →  2021 →  #6 →  Back

ArticleName Innovative technology of enhancing metallurgical value of concentrates at Stoilensky GOK (Mining and Processing Plant)
DOI 10.17580/gzh.2021.06.06
ArticleAuthor Gzogyan S. R., Gzogyan T. N., Lifanov D. V., Cherednichenko M. V.

Belgorod State University, Belgorod, Russia:

S. R. Gzogyan, Senior Researcher
T. N. Gzogyan, Head of Laboratory, Candidate of Engineering Sciences,


Stoilensky GOK, Stary Oskol, Russia:
D. V. Lifanov, Project Manager at Development Engineering Office of Ore Division
M. V. Cherednichenko, Chief Dressing Expert at Engineering Office of Directorate


The major trend of the present day in the mining and processing sector is high quality of products under increasing competition both in the domestic and international market. The methods of obtaining high-quality products from rougher concentrates are commonly known. High-quality products suitable for immediate metallization enjoy an increasing demand. This article describes an innovative technology developed and commercially approved for enhancing metallurgical value of magnetite concentrates obtained by magnetic gravity separation of ferruginous quartzite of the Kursk Magnetic Anomaly. Applicability of the technology to obtaining high-quality products from finely disseminated ferruginous quartzite from Stoilensky field for the immediate metallization is assessed. The commercial test data and the optimized conditions of the technology application in production of magnetite concentrates at Stoilensky GOK are presented.

keywords Stoilensky GOK, ferruginous quartzite, magnetic gravity separation, ferromagnetic particles, concentrate, liquid waste, spigot product, magnetic field strength, productive capacity

1. Chanturia E. L., Gzogyan S. R. Modern state of the theory and practice of obtaining high-quality magnetite concentrates. Current situation and methods of dressing efficiency enhancement for ferruginous quartzite. Moscow : Gornaya kniga, 2012. pp. 3–31.
2. Chanturia V. A. Innovation-based processes of integrated and high-level processing of natural and technogenic minerals. Gornyi Zhurnal. 2015. No. 7. pp. 29–37. DOI: 10.17580/gzh.2015.07.05
3. Gzogyan T. N. Theoretical and experimental research of high-quality concentrate production. GIAB. 2010. No. 4. pp. 389–393.
4. Oliazadeh M., Vazirizadeh A. Removing impurities from iron ores: methods and industrial cases. Proceedings of the XXVIII International Mineral Processing Congress. Québec, 2016.
5. Yushina T. I., Krylov I. O., Valavin V. S., Sysa P. A. Producibility of iron-bearing materials from industrial waste of Kamysh-Burun Iron Ore Plant using ROMELT process. Gornyi Zhurnal. 2017. No. 6. pp. 53–57. DOI: 10.17580/gzh.2017.06.10
6. Lu Liming. Iron Ore: Mineralogy, Processing and Environmental Sustainability. Cambridge : Woodhead Publishing, 2015. 641 p.
7. Atmadzhidi A. S., Goncharov K. V., Olyunina T. V., Sadykhov G. B. Benefication of the crude titanomagnetite concentrate by the wet magnetic separation method. Tsvetnye Metally. 2018. No. 9. pp. 19–24. DOI: 10.17580/tsm.2018.09.02
8. Yushina T. I., Krylov I. O., Valavin V. S., Toan V. V. Old iron-bearing waste treatment technology. Eurasian Mining. 2018. No. 1. pp. 16–21. DOI: 10.17580/em.2018.01.04
9. Prokopyev S. A., Pelevin A. E., Napolskikh S. A., Gelbing R. A. Staged screw separation of magnetite concentrate. Obogashchenie Rud. 2018. No. 4. pp. 28–33. DOI: 10.17580/or.2018.04.06
10. Aleynikov N. A., Usachev P. A., Zelenov P. I. Structuring of ferromagnetic suspensions. Leningrad : Nedra, 1974. 119 p.
11. Usachev P. A. Physical and mechanical bases and technology of separation of minerals in ferromagnetic suspensions : thesis of Inauguration of Dissertation … Doctor of Engineering Sciences. Moscow, 1982. 37 p.
12. Opalev A. S., Khokhulya M. S., Fomin A. V., Karpov I. V. Creation of innovative technologies for production of high-quality iron concentrate production in the North West of Russia. Gornyi Zhurnal. 2019. No. 6. pp. 56–61. DOI: 10.17580/gzh.2019.06.07
13. Dauce P. D., de Castro G. B., Lima M. M. F., Lima R. M. F. Characterisation and magnet ic concentration of an iron ore tailings. Journal of Materials Research and Technology. 2019. Vol. 8, Iss. 1. pp. 1052–1059.
14. Chang Tang, Keqing Li, Wen Ni, Duncheng Fan. Recovering Iron from Iron Ore Tailings and Preparing Concrete Composite Admixtures. Minerals. 2019. Vol. 9, Iss. 4. 232. DOI: 10.3390/min9040232
15. Bhadani K., Asbjörnsson G., Hulthén T., Evertsson M. Application of multi-disciplinary optimization architectures in mineral processing simulations. Minerals Engineering. 2018. Vol. 128. pp. 27–35.
16. Papalambros P. Y., Wilde D. J. Principles of Optimal Design: Modeling and Computation. 3rd ed. Cambridge : Cambridge University Press, 2017. 376 p.
17. Gzogyan T. N., Opalev A. S., Gzogyan S. R., Shcherbakov A. V. Magnetic gravity separation production of high-quality concentrates from ferruginous quartzite of the Kursk Magnetic Anomaly. XII Congress of Dressers from the CIS Countries : Proceedings. Moscow, 2019. pp. 182–186.
18. Gzogyan S. R., Scherbakov A. V. Improving the quality of concentrates of Stoilensky GOK JSC with the use of magneticAgravity separation. Obogashchenie Rud. 2020. No. 6. pp. 3–8. DOI: 10.17580/or.2020.06.01

Language of full-text russian
Full content Buy