ArticleAuthorData |
Faculty of Petroleum and Minerals – Al Neelain University, Khartoum, Sudan1 ; Academy of Engineering, Peoples’ Friendship University of Russia – RUDN University, Moscow, Russia2:
Hassan M. A., Lecturer in the Department of Geology1, Post-Graduate Student2, musabeljah78@gmail.com
Academy of Engineering, Peoples’ Friendship University of Russia – RUDN University, Moscow, Russia:
Kotelnikov A. E., Head of the Department of mineral developing and oil & gas engineering, Associate Professor, Candidate of Geologo-Mineralogical Sciences Abdullah E. A., Assistant of the Department of mineral developing and oil & gas engineering Kotelnikova E. M., Senior Lecturer, Candidate of Geologo-Mineralogical Sciences |
Abstract |
The study area of this research some 70 km southwest of Gedarif city, Gedarif State, in eastern Sudan. With a geological position, it is located within two major lithological associations, representing two different crustal entities: Saharan Metacraton (SMC) in the west and the Arabian Nubian Shield (ANS) to the east. The main objective of the study is a petrological investigation of the mantle peridotites within Qala En Nahal-Umm Saqata area. The relatively large-scale exposed masses of mantle’s peridotite, include mainly the Utash mass and the Umm Saqata mass in the south and the Qala en Nahal mass and the Fau mass in the north of the area. Petrographically, they are mostly serpentinite. They have low-contents of Al2O3, CaO, TiO2O, MgO, Na2O and K2O, all consistent with depleted mantle materials, and similar to the metamorphic peridotites. The analyzed serpentine minerals are mainly pseudomorphic serpentines with subordinate antigorite, which may suggest that the parent minerals were first retrogressed to form lizardite and chrysotile. Subsequently, progressive metamorphism has recrystallized these minerals into antigorite. The chromites from the study area have high Cr# (Cr# varies from 0.51 to 0.87), most probably representing the primary phase which is similar to chromian spinels in mantle-derived peridotites. The presence of podiform chromites in the studied serpentinites is e typical of supra-subduction ophiolites, with Cr# similar to those of forearc ophiolites and boninite-derived chromites. Qala En Nahal-Umm Saqata mantle peridotites were formed in a forearc setting, during the subduction initiation that developed as a result of southeastward-dipping subduction zone. They possibly represent ensimatic, thrusted material, after the collision of the Nubian-Arabian Shield with the older sialic continental Saharan Metacraton during the late Proterozoic, Pan-African tectono-thermal event.
These investigations were carried out supported by the Peoples’ Friendship University of Russia (RUDN University), Moscow, Russia and the Faculty of Petroleum and Minerals, Al Neelain University, Sudan. The publication has been prepared with the support of the «RUDN University Program 5–100». To all we express our thanks and appreciations. |
References |
1. Ghanem H., McAleer R. J., Jarrar G. H., Al Hseinat M., Whitehouse M. 40Ar/39Ar and U-Pb SIMS zircon ages of Ediacaran dikes from the Arabian-Nubian Shield of south Jordan. Precambrian Research. 2020. Vol. 343. 105714. 2. Kröner A. Ophiolites and the evolution of tectonic boundaries in the late Proterozoic Arabian–Nubian Shield of northeast Africa and Arabia. Precambrian Research. 1985. Vol. 27, No. 1–3. pp. 277–300. 3. Stern R. J. Arc assembly and continental collision in the Neoproterozoic East African Orogen: Implications for the consolidation of Gondwanaland. Annual Review of Earth and Planetary Sciences. 1994. Vol. 22. pp. 319–351. 4. Loizenbauer J., Wallbrecher E., Fritz H., Neumayer P., Khudeir A. A. et al. Structural geology, single zircon ages and fluid inclusion studies of the Meatiq metamorphic core complex: implication for Neoproterozoic tectonics in the Eastern Desert of Egypt. Precambrian Research. 2001. Vol. 110, No. 1–4. pp. 357–383. 5. Kusky T. M. Precambrian Ophiolites and Related Rocks: Introduction. Developments in Precambrian Geology. 2004. Vol. 13. pp. 1–35. 6. Hassan M. A., Kotelnikov A. E., Abdullah E. A. Geochemistry and Geotectonic Setting of the Post-orogenic granites at Qala En Nahal-Um Sagata Area, Gedarif State, Sudan. IOP Conference. Series: Earth and Environmental Science. 2020. Vol. 459, No. 3. 042032. DOI: 10.1088/1755–1315/459/4/042032 7. Gansser A. The ophiolite mélange, a world-wide problem on Tethyan examples. Ecologae Geologicae Helvetiae. 1974. Vol. 67. p. 479–507. 8. Azer M. K., Khalil A. E. S. Petrological and mineralogical studies of Pan-African serpentinites at Bir Al-Edeid area, central Eastern Desert, Egypt. Journal of African Earth Sciences. 2005. Vol. 43, No. 5. pp. 525–536. 9. Wicks F. J., Whittaker E. J. W. Serpentine textures and serpentinization. Canadian Mineralogist. 1977. Vol. 15, No. 4. pp. 459–488. 10. O’Hanley D. S. Serpentinites: Records of Tectonic and Petrological History. New York : Oxford University Press, 1996. 277 p. 11. Coleman R. G. Ophiolites. Berlin : Springer-Verlag, 1977. 229 p. 12. Li X.-P., Rahn M., Buche K. Serpentinites of the Zermatt-Saas ophiolite complex and their texture evolution. Journal of metamorphic Geology. 2004. Vol. 22, No. 3. pp. 159–177. 13. McDonough W. F., Sun S. S. Composition of the Earth. Chemical Geology. 1995. Vol. 120, No. 3–4. pp. 223–253. 14. Boynton W. V. Cosmochemistry of the Rare Earth Elements: Meteorite Studies. Rare Earth Element Geochemistry. P. Henderson (Ed.). Amsterdam : Elsevier, 1984. Vol. 2. pp. 63–114.
15. Proenza J. A., Ortega-Gutierrez F., Camprubi A., Tritlla J., Elias-Herrera M., Reyes-Salas M. Paleozoic serpentinites enclosed chromitites from Tehuitzingo (Acatla´n Complex, southern Mexico): a petrological and mineralogical study. Journal of South American Earth Sciences. 2004. Vol. 16, No. 8. pp. 649–666. 16. Coleman R. G. Plate tectonic emplacement of upper mantleperidotite along continental edges. Journal of Geological Research. 1971. Vol. 76, No. 5. pp. 1212–1222. 17. Dungan M. A. A microprobe study of antigorite and some serpentine pseudomorphs. Canadian Mineralogist. 1979. Vol. 17, No. 4. pp. 711–784. 18. Wicks F. J., Plant A. G. Electron microprobe and X-ray microbeam studies of serpentine textures. Canadian Mineralogist. 1979. Vol. 17, No. 4. pp. 785–830. 19. Dick H. J. B., Bullen T. Chromian spinel as a petrogenetic indicator in abyssal and alpine-type peridotites and spatially related lavas. Contributions to Mineralogy and Petrology. 1984. Vol. 86. pp. 54–76. 20. Barnes S. J. Chromite in Komatiites, II. Modification during Greenschist to Mid-Amphibolite Facies Metamorphism. Journal of Petrology. 2000. Vol. 41, No. 3. pp. 387–409. 21. Leblanc M., Dupuy C., Cassard D., Noutte J., Nicolas A. Essai sur la genese des corps podiformes de chromite dans les peridotites ophiolitiques: etude des chromites de Nouvelle. Ophiolites Proceedings International Symposium Cyprus. Geological Survey Department, Cyprus Publication. 1980. pp. 691–701. 22. Roeder P. L. Chromite from the Fiery rain of Chondrules to the Kilauea iki lava lake. Canadian Mineralogist. 1994. Vol. 32, No. 4. pp. 729–746. 23. Bonavia F. F., Diella V., Ferrario A. Precambrian podiform chromitites from Kenticha Hill, southern Ethiopia. Economic Geology. 1993. Vol. 88, No. 1. pp. 198–202. 24. Arai S., Uesugi J., Ahmed A. H. Upper crustal podiform chromitite from the northern Oman ophiolite as the stratigraphically shallowest chromitite in ophiolite and its implication for Cr concentration. Contributions to Mineralogy and Petrology. 2004.Vol. 147, No. 2. pp. 145–154. 25. Ferrario A., Garuti G. Platinum-group minerals in chromite-rich horizons of the Niquelandia complex (central Goias, Brazil). Geo-Platinum. 1987. Vol. 87. pp. 261–272. 26. Floyd P. A. Oceanic basalts. Blachie and Son Ltd., 1991. 455 p. 27. Bonatti E., Michael P. J. Mantle peridotites from continental rifts to oceanic basins to subduction zones. Earth and Planetary Science Letters. 1989. Vol. 91, No. 3–4. pp. 297–311. 28. El Bahariya G. A., Arai S. Petrology and origin of Pan-African serpentinites with particular reference to chromain spinel composition, Eastern Desert, Egypt: Implication for suprasubduction zone ophiolite. 3rd International Conference on the Geology of Africa. Assiut University, Egypt. 2003. pp. 371–388. 29. Ishii T., Robinson P. T., Maekawa H., Fiske R. Petrological Studies of Peridotites from Diapiric Serpentinite Seamounts in the Izu-Mariana Fore-arc, Leg 125. Proceedings of the Ocean Drilling Program. Scientific Results. 1992. Vol. 125. pp. 445–485. 30. Pearce J. A., Lippard S. J., Roberts S. Characteristics and tectonic significance of supra-subduction zone ophiolites. Geological Society, Special Publication. 1984. Vol. 16, pp. 77–94. 31. Arai S. Chemistry of chromian spinel in volcanic rocks as a potential guide to magma chemistry. Mineralogical Magazine. 1992. Vol. 56, No. 383. pp. 173–184. 32. Kahya A., Kuşcu M. Open System Condition Serpentinization of Host-rock Magnesite in Süleymaniye, Tutluca and Margı Region of Eskişehir, NW Turkey. Universal Journal of Geoscience. 2016. Vol. 4, No. 6. pp. 128–143. 33. Pober E., Faupl P. The chemistry of detrital chromite spinels and its impilication for the geodynamic evolution of the eastern Alps. 33. Geologische Rundschau. 1988. Vol. 77(3). pp. 641–670. 34. Abdel-Karim A. M., Ali S., Helmy H. M., El-Shafei S. A. A fore-arc setting of the Gerf ophiolite, Eastern Desert, Egypt: Evidence from mineral chemistry and geochemistry of ultramafites. Lithos. 2016. Vol. 263. pp. 52–65. DOI: 10.1016/j.lithos.2016.05.023 35. Dilek Y., Furnes H., Shallo M. Suprasubduction zone ophiolite formation along the periphery of Mesozoic Gondwana. Gondwana Research. 2007. Vol. 11, No. 4. pp. 453–475. 36. Farahat E. S. Neoproterozoic arc–back-arc system in the Central Eastern Desert of Egypt: Evidence from supra-subduction zone ophiolites. Lithos. 2010. Vol. 120, No. 3–4. pp. 293–308. 37. Pearce J. A. Supra-subduction zone ophiolites: The search for modern analogues. Geological Society, Special Paper. 2003. Vol. 373. pp. 269–294. 38. Zhou M. F., Robinson P. T. High-Cr and high-Al podiform chromitites, Western China: relationship to partial melting and melt/rock reaction in the upper mantle. International Geology Reviews. 1994. Vol. 36. pp. 678–686. 39. Proenza J., Gervilla F., Melgarejo J. C., Bodinier J.-L. Al- and Cr-rich chromitites from the Mayari-Baracoa Ophiolitic Belt (Eastern Cuba): consequence of interaction between volatilerich melts and peridotites in suprasubduction mantle. Economic Geology. 1999. Vol. 94, No. 4. pp. 547–566. 40. Barnes S. J., Roeder P. L. The range of spinel compositions in terrestrial mafic and ultramafic rocks. Journal of Petrology. 2001. Vol. 42, No. 12. pp. 2279–2302. 41. Arai S. Characterization of spinel peridotites by olivine-spinel compositional relationships: review and interpretation. Chemical Geology. 1994. Vol. 113, No. 3–4. pp. 191–204. 42. Kamenetsky V. S., Crawford A. J., Meffre S. Factors controlling chemistry of magmatic spinel: an empirical study of associated olivine, Cr-spinel and melt inclusions from primitive rocks. Journal of Petrology. 2001. Vol. 42, No. 4. pp. 655–671. 43. Stolper E., Newman S. The role of water in the petrogenesis of Mariana trough magmas. Earth and Planetary Science Letters. 1994. Vol. 121, No. 3–4. pp. 293–325. 44. Keppler H. Constraints from partitioning experiments on the composition of subduction-zone fluids. Nature. 1996. Vol. 380. pp. 237–240. 45. Kodolányi J., Pettke T., Spandler C., Kamber B. S., Gmeling K. Geochemistry of Ocean Floor and Fore-arc Serpentinites: Constraints on the Ultramafic Input to Subduction Zones. Journal of Petrology. 2012. Vol. 53, No. 2. pp. 235–270. |