ArticleName |
Дезинтеграция горючего сланца в шаровой мельнице с использованием различных типов мелющих тел |
ArticleAuthorData |
Каирский университет, г. Гиза, Египет:
Хайри Н., аспирант
Эль-Мофти С. Э., профессор, канд. техн. наук, профессор, mpm_cu@yahoo.com
Эль-Мидани А. А., профессор, канд. техн. наук, профессор
Национальное управление по дистанционному зондированию и космическим наукам, г. Каир, Египет:
Эль-Магд И. А., начальник отдела, канд. техн. наук, профессор |
References |
1. Developments in petroleum science: Oil shale / Eds. Yen T. F., Chilingarian G. V. Elsevier Science Ltd, 1976. 292 p. 2. Tissot B. P., Welte D. H. Petroleum formation and occurrence. Springer Science & Business Media, 2013. 702 p. 3. El-Mofty S. E., Khairy N., El-Kammar A.M., El-Midany A. A. Effect of mineralogical composition and kerogen content on oil shale natural floatability // Energy Sources, Part A: Recovery, Utilization, and Environmental Effects. 2018. Vol. 40, Iss. 9. P. 1144–1152. 4. Chang Z., Chu M., Zhang C., Bai S., Lin H., Ma L. Influence of inherent mineral matrix on the product yield and characterization from Huadian oil shale pyrolysis // Journal of Analytical and Applied Pyrolysis. 2018. Vol. 130. P. 269–276. 5. Khairy N. Upgrading of oil shale by flotation: MSc thesis. Cairo University, Faculty of Engineering, 2013. 6. Meng Y., Tang L., Yan Y., Oladejo J., Jiang P., Wu T., Pang C. Effects of microwave-enhanced pretreatment on oil shale milling performance // Energy Procedia. 2019. Vol. 158. P. 1712–1717. 7. Meng Y., Yan Y., Jiang P., Zhang M., Oladejo J., Wu T., Pang C. Investigation on breakage behaviour of oil shale with high grinding resistance: A comparison between microwave and conventional thermal processing // Chemical Engineering and Processing: Process Intensification. 2020. Vol. 151. DOI: 10.1016/j.cep.2020.107909.
8. Hussein N. T., El-Midany A. A. Size reduction of oil shale by attrition scrubbing and its effect on kerogen content // International Journal of Coal Preparation and Utilization. 2020. April. DOI: 10.1080/19392699.2020.1749054. 9. Hussein N. T., El-Midany A. A. H. Significance of conditioning pretreatment on enrichment and flotation of oil shale // Petroleum Science and Technology. 2020. Vol. 38, Iss. 10. P. 713–722. 10. Cook T., Courtney T. The effects of ball size distribution on attritor efficiency // Metallurgical and Materials Transactions A. 1995. Vol. 26, Iss. 9. P. 2389–2397. 11. Katubilwa F. M. Effect of ball size distribution on milling parameters: MSc thesis. University of the Witwatersrand, Faculty of Engineering and the Built Environment, 2008. 101 p. 12. Lameck N. N. S. Effects of grinding media shapes on ball mill performance: MSc thesis. University of the Witwatersrand, Faculty of Engineering and the Built Environment. 2005. 146 p. 13. Kotake N., Kuboki M., Kiya S., Kanda Y. Influence of dry and wet grinding conditions on fineness and shape of particle size distribution of product in a ball mill // Advanced Powder Technology. 2011. Vol. 22, Iss. 1. P. 86–92. 14. Kuzev L., Penchev T., Karastoyanov D. New shape milling bodies for ball mills // Problems of Engineering Cybernetics and Robotics. 2009. Vol. 61. P. 11–19. 15. Deniz V. Influence of interstitial filling on breakage kinetics of gypsum in ball mill // Advanced Powder Technology. 2011. Vol. 22, Iss. 4. P. 512–517. 16. Deniz V. The effects of ball filling and ball diameter on kinetic breakage parameters of barite powder // Advanced Powder Technology. 2012. Vol. 23, Iss. 5. P. 640–646. 17. Olejnik T. P. Kinetics of grinding ceramic bulk considering grinding media contact points // Physicochemical Problems of Mineral Processing. 2010. Vol. 44. P. 187–194. 18. Olejnik T. P. Selected mineral materials grinding rate and its effect on product granulometric composition // Physicochemical Problems of Mineral Processing. 2013. Vol. 49. P. 407–418. 19. Austin L. G. Introduction to the mathematical description of grinding as a rate process // Powder Technology. 1971. Vol. 5, Iss. 1. P. 1–17. 20. Fuerstenau D. W., De A., Kapur P. C. Linear and nonlinear particle breakage processes in comminution systems // International Journal of Mineral Processing. 2004. Vol. 74. P. S317–S327. 21. Austin L. G., Shoji K., Bell D. Rate equations for nonlinear breakage in mills due to material effects // Powder Technology. 1982. Vol. 31, Iss. 1. P. 127–133. 22. Tavares L. M., de Carvalho R. M. Modeling breakage rates of coarse particles in ball mills // Minerals Engineering. 2009. Vol. 22, Iss. 7–8. P. 650–659. 23. Barani K., Balochi H. First-order and second-order breakage rate of coarse particles in ball mill grinding // Physicochemical Problems of Mineral Processing. 2016. Vol. 52. P. 268–278. 24. Duda W. H. Cement data book. In 2 vol. Weisbaden, Berlin: Bauverlag GmbH, 1985. 25. UÇurum M., GüleÇ Ö., CıngıtaŞ M. Wet grindability of calcite to ultra-fine sizes in conventional ball mill // Particulate Science and Technology. 2015. Vol. 33, Iss. 4. P. 342–348. 26. Erdem A. S., Ergün Ş. L. The effect of ball size on breakage rate parameter in a pilot scale ball mill // Minerals Engineering. 2009. Vol. 22, Iss. 7–8. P. 660–664. 27. Tüzün M. A., Loveday B. K., Hinde A. L. Effect of pin tip velocity, ball density and ball size on grinding kinetics in a stirred ball mill // International Journal of Mineral Processing. 1995. Vol. 43, Iss. 3–4. P. 179–191. |