Journals →  Obogashchenie Rud →  2021 →  #4 →  Back

ArticleName Effects of magnetic flocculation on iron-bearing ore concentration
DOI 10.17580/or.2021.04.03
ArticleAuthor Pelevin A. E.

Ural State Mining University (Ekaterinburg, Russia):

Pelevin A. E., Professor, Doctor of Engineering Sciences, Associate Professor,


Iron ore processing is sensitive to the magnetic properties of magnetite and titanomagnetite. When the magnetic hardness of magnetite is high, respective demagnetizing operations are added to the process to break the magnetite floccules. Preliminary demagnetization of the hydrocyclone feed in the beneficiation of titanomagnetite ore allowed improving the classification efficiency by 22.6 %. Demagnetization of the screw separator feed resulted in an increase in the mass fraction of iron in the magnetite concentrate recovered upstream of the last grinding stage from 58 to 63 %. Preliminary slurry demagnetization positively affects the hydraulic screening process. At high slurry dilution, when the solids mass fraction is 20 %, the screening performance may be improved without preliminary demagnetization. Demagnetization upstream of filtration can reduce the moisture content of the concentrate by 0.4 to 0.5 %. The effectiveness of preliminary demagnetization depends on the coercive force of the magnetite from a particular deposit. Wet magnetic separation in an alternating field can significantly inhibit magnetite flocculation as compared to separation in a constant magnetic field. During additional processing of magnetite concentrate in an alternating magnetic field, the mass fraction of iron in the concentrate grew significantly from 62.32 to 66.44 %. This allows considering separation in an alternating magnetic field as a method for improving the iron concentrate grade.

keywords Magnetite, titanomagnetite, coercive force, magnetite floccule, demagnetization, classification efficiency, concentrate moisture content, alternating magnetic field

1. Lomovtsev L. A., Nesterova N. A., Drobchenko L. A. Magnetic beneficiation of highly magnetic ores. Moscow: Nedra, 1979. 235 p.
2. Karmazin V. V., Karmazin V. I. Magnetic, electric and special methods of mineral processing. Vol. 1. Magnetic and electric methods of mineral processing. Moscow: Gornaya Kniga, 2012. 672 p.
3. Arsentyev V. A., Sentemova V. A., Yadryshnikov A. O. Changing the topology of magnetic beneficiation schemes for iron ores in order to reduce energy consumption. Gorny Informatsionno-analiticheskiy Byulleten'. 2000. No. 11. pp. 224–231.
4. Karmazin V. V., Andreev V. G., Palin I. V., Zhilin S. N., Pozharskiy Yu. M. Development of equipment for the technology of full-stage beneficiation of magnetite quartzite. Gornyi Zhurnal. 2010. No. 12. pp. 85–89.
5. Pelevin A. E. Improving magnetite concentrate quality in an alternating magnetic field. Obogashchenie Rud. 2019. No. 6. pp. 19–24. DOI: 10.17580/or.2019.06.04.
6. Kornilkov S. V., Dmitriev A. N., Pelevin A. E., Yakovlev A. M. Separate processing of ore at Gusevogorsky deposit. Gornyi Zhurnal. 2016. No. 5. pp. 86–90. DOI: 10.17580/gzh.2016.05.12.
7. Handbook of ore beneficiation. Processing plants / Ed. O. S. Bogdanov, Yu. F. Nenarokomov. 2nd ed. Moscow: Nedra, 1984. 358 p.
8. Ganzhenko I. M., Zarshchikova G. G., Kamalova T. B., Alekseeva L. A., Shestak Ye. M., Yakubailik E. K. Effect of demagnetization on hydraulic classification of strongmagnetic ores. Obogashchenie Rud. 2013. No. 2. pp. 13–16.
9. Prokopyev S. A., Pelevin A. E., Napolskikh S. A., Gelbing R. A. Staged screw separation of magnetite concentrate. Obogashchenie Rud. 2018. No. 4. pp. 28–33. DOI: 10.17580/or.2018.04.06.
10. Botha S., le Roux J. D., Craig I. K. Hybrid non-linear model predictive control of a run-of-mine ore grinding mill circuit. Minerals Engineering. 2018. Vol. 123. pp. 49–62.
11. Le Roux J. D., Olivier L. E., Naidoo M. A., Padhi R., Craig I. K. Throughput and product quality control for a grinding mill circuit using non-linear MPC. Journal of Process Control. 2016. Vol. 42. pp. 35–50.
12. Palaniandy S., Halomoan R., Ishikawa H. TowerMill circuit performance in the magnetite grinding circuit — The multi-component approach. Minerals Engineering. 2019. Vol. 133. pp. 10–18.
13. Markauskas D., Kruggel-Emden H. Coupled DEMSPH simulations of wet continuous screening. Advanced Powder Technology. 2019. Vol. 30, Iss. 12. pp. 2997–3009.
14. Ismagilov R. I., Kozub A. V., Gridasov I. N., Shelepov E. V. Advanced solutions applied by JSC Andrei Varichev Mikhailovsky GOK to improve ferruginous quartzite concentration performance. Gornaya Promyshlennost'. 2020. No. 4. pp. 98–103.
15. Vaisberg L. A., Korovnikov A. N. Fine screening as an alternative to hydraulic classification by size. Obogashchenie Rud. 2004. No. 3. pp. 23–34.
16. Elves Matiolo, Hudson Jean Bianquini Couto, Neymayer Lima, Klaydison Silva, Amanda Soaresde Freitas. Improving recovery of iron using column flotation of iron ore slimes. Minerals Engineering. 2020. Vol. 158. DOI: 10.1016/j.mineng.2020.106608.
17. Abhyarthana Pattanaik, Venugopal Rayasam. Analysis of reverse cationic iron ore fines flotation using RSMD-optimal design — An approach towards sustainability. Advanced Powder Technology. 2018. Vol. 29, Iss. 12. pp. 3404–3414.
18. Zhuravleva E. S., Chanturiya E. L. Evaluation of the possibility of using electrochemical technology for the preparation of waters and reagents to improve the technological parameters of processing of unoxidized ferruginous quartzites. Chernye Metally. 2018. No. 5. pp. 6–9.
19. Demagnetizing devices. URL: (accessed: 23.07.2021).

Language of full-text russian
Full content Buy