Журналы →  Tsvetnye Metally →  2021 →  №9 →  Назад

Название Bond coat composition formed by spark plasma sintering for gradient material with thermal barrier properties
DOI 10.17580/tsm.2021.09.05
Автор Oglezneva S. A., Kachenyuk M. N., Smetkin A. A., Kulmetieva V. B.
Информация об авторе

Perm National Research Polytechnic University, Perm, Russia:

S. A. Oglezneva, Professor at the Department of the Mechanics of Composite Materials and Structures, Doctor of Technical Sciences, e-mail: ogleznevasa@pstu.ru
M. N. Kachenyuk, Associate Professor at the Department of the Mechanics of Composite Materials and Structures, Candidate of Technical Sciences, e-mail: maxxkach@yandex.ru

A. A. Smetkin, Associate Professor at the Department of the Mechanics of Composite Materials and Structures, Candidate of Technical Sciences, e-mail: smetkinaa@pstu.ru
V. B. Kulmetieva, Associate Professor at the Department of the Mechanics of Composite Materials and Structures, Candidate of Technical Sciences


High-temperature materials for thermal barrier coatings (TBC) have important prospects for application in the aircraft engine industry. To increase the service life and reliability of superalloy parts, the bond coat (BC) in the structure of the TBC is of great importance. In this study, the architecture of the BC material between the superalloy and the external ceramics is proposed. It is shown that the BC layer can consist of a sublayer of intermetallic NiAl (VKNA) and a mixture of VKNA with 15 or 30 wt.% zirconium dioxide (8YSZ). This architecture allows us to form by spark plasma sintering (SPS) technique. In the work, samples of a gradient BC VKNA/VKNA+(15% or 30%)YSZ/YSZ were obtained using SPS at 1070 oC, a pressure of 30 MPa and an isothermal exposure of 5 min. In all sintered compositions the porosity did not exceed 2%. The structure of the BC material is characterized by scanning electron microscopy, energy-dispersion spectroscopy, and micro-durometry. It is shown that the SPS provides an adhesive connection of the sublayers in the BC layer and with the external ceramics. The microhardness increases li nearly during the transition from the VKNA layer to the YSZ layer through a BC with different YSZ content in the sublayer. The BC samples demonstrated a thermal conductivity gradient from the Inconel 625 substrate to YSZ and the influence of the YSZ content in the sublayers on the decrease in the coefficient of linear thermal expansion in the temperature range of 800–1000 oC was also determined. Damage to the ceramic surface during thermal cycling in air at 1100 oC, i.e. the appearance and development of cracks, is not more than 10% at 45 cycles.
This research was carried out under Basic Scientific Research Assignment No. FSNM-2020-0026 of the Ministry of Education and Science of Russia and was funded by the Russian Foundation for Basic Research, Grant No. 19-48-590007.

Ключевые слова Thermal barrier coating, bond coat, sublayer, spark plasma sintering, thermal conductivity, structure, thermal cycling
Библиографический список

1. Besisa D. H. A., Ewais E. M. M. Advances in functionally graded ceramics – processing, sintering properties and applications. Advances in Functionally Graded Materials and Structures, Farzad Ebrahimi, IntechOpen. March 31st 2016. DOI: 10.5772/62612. Available at: https://www.intechopen.com/books/advances-in-functionally-graded-materials-and-structures/advancesin-functionally-graded-ceramics-processing-sintering-properties-and-applications (Accessed: 13.09.2021).
2. Naebe M., Shirvanimoghaddam K. Functionally graded materials: A review of fabrication and properties. Applied Materials Today. 2016. Vol. 5. pp. 223–245. DOI: 10.1016/j.apmt.2016.10.001.
3. Fukui Y., Takashima K., Ponton C. B. Measurement of Young’s modulus and internal friction of an in situ Al – Al3Ni functionally gradient material. Journal of Materials Science. 1994. Vol. 29. pp. 2281–2288. DOI: 10.1007/BF00363415.
4. Abbas M. R., Uday M. B., Noor A. M., Ahmad N. et al. Microstructural evaluation of a slurry based Ni/YSZ thermal barrier coating for automotive turbocharger turbine application. Materials and Design. 2016. Vol. 109. pp. 47–56.
5. Dhineshkumar S. R., Duraiselvam M., Natarajan S., Panwar S. S. et al. Enhancement of strain tolerance of functionally graded LaTi2Al9O19 thermal barrier coating through ultra-short pulse based laser texturing. Surface and Coatings Technology. 2016. Vol. 304. pp. 263–271. DOI: 10.1016/j.surfcoat.2016.07.018.
6. Cherradi N., Kawasaki A., Gasik M. Worldwide trends in functional gradient materials research and development. Composites Engineering. 1994. Vol. 4, No. 8. pp. 883–894. DOI: 10.1016/S0961-9526(09)80012-9.
7. Sam M., Jojith R., Radhika N. Progression in manufacturing of functionally graded materials and impact of thermal treatment — A critical review. Journal of Manufacturing Processes. 2021. Vol. 68. Part A. pp. 1339–1377. DOI: 10.1016/j.jmapro.2021.06.062.
8. Allahyarzadeh M. H., Aliofkhazraei M., Sabour Rouhaghdam A. R., Torabinejad V. Gradient electrodeposition of Ni – Cu – W(alumina) nanocomposite coating. Materials and Design. 2016. Vol. 107. pp. 74–81. DOI: 10.1016/j.matdes.2016.06.019.
9. Naga S. M., Awaad M., El-Maghraby H. F., Hassan A. M. et al. Effect of La2Zr2O7coat on the hot corrosion of multi-layer thermal barrier coatings. Materials and Design. 2016. Vol. 102. pp. 1–7. DOI: 10.1016/j.matdes.2016.03.133.
10. Spark Plasma Sintering of Materials: Advances in Processing and Applications. 1st ed. Ed. P. Cavaliere. Cham, Switzerland : Springer, 2019. 761 p. DOI: 10.1007/978-3-030-05327-7.
11. Kashin D. S., Stekhov P. A. Modern thermal barrier coatings produced by electron-beam deposition: A review. Trudy VIAM. 2018. No. 2(62). pp. 84–90. DOI: 10.18577/2307-6046-2018-0-2-10-10.
12. Bobzin K., Zhao L., Wietheger W., Königstein T. Key influencing factors for the thermal shock resistance of La2Zr2O7-based multilayer TBCs. Surface and Coatings Technology. 2020. Vol. 396. p. 125951. DOI: 10.1016/j.surfcoat.2020.125951.
13. Yang P., An Y., Zhao D.,Yuhong Li Y. et al. Structure evolution, thermal properties and sintering resistance of promising thermal barrier coating material La2(Zr0.75Ce0.25)2O7. Ceramics International. 2020. Vol. 46. pp. 20652–20663. DOI: 10.1016/j.ceramint.2020.04.111.
14. Wu J., Wei X., Padture N. P., Klemens P. G. et al. Low-thermal-conductivity rare-earth zirconates for potential thermal-barrier-coating applications. Journal of the American Ceramic Society. 2002. Vol. 85, No. 12. pp. 3031–3035. DOI: 10.1111/j.1151-2916.2002.tb00574.x.
15. Guo L., Guo H., Peng H., Gong S. Thermophysical properties of Yb2O3 doped Gd2Zr2O7 and thermal cycling durability of (Gd0,9Yb0,1)2Zr2O7/YSZ thermal barrier coatings. Journal of the European Ceramic Society. 2014. Vol. 34. pp. 1255–1263. DOI: 10.1016/j.jeurceramsoc.2013.11.035.
16. Gadow R., Lischka M. Lanthanum hexaaluminate — novel thermal barrier coatings for gas turbine applications — materials and process development. Surface and Coatings Technology. 2002. Vol. 151–152. pp. 392–399. DOI: 10.1016/S0257-8972(01)01642-5.
17. Haynes A., Unocic K. A., Lance M. J., Pint B. A. Impact of superalloy composition, bond coat roughness and water vapor on TBC lifetime with HVOF NiCoCrAlYHfSi bond coatings. Surface and Coatings Technology. 2013. Vol. 237. pp. 65–70. DOI: 10.1016/j.surfcoat.2013.09.062.
18. Zhou X., Xu Z., Mu R., He L. et al. Thermal barrier coatings with a double-layer bond coat on Ni3Al based single-crystal superalloy. Journal of Alloys and Compounds. 2014. Vol. 591. pp. 41–51. DOI: 10.1016/j.jallcom.2013.12.040.
19. Yang H. Z., Zou J. P., Shi Q., Dai M. J. et al. Analysis of the microstructural evolution and interface diffusion behavior of NiCoCrAlYTa coating in high temperature oxidation. Corrosion Science. 2019. Vol. 153. pp. 162–169. DOI: 10.1016/j.corsci.2019.03.022.
20. Song J., Ma K., Zhang L., Schoenung J. M. Simultaneous synthesis by spark plasma sintering of a thermal barrier coating system with a NiCrAlY bond coat. Surface and Coatings Technology. 2010. Vol. 205, No. 5. pp. 1241–1244. DOI: 10.1016/j.surfcoat.2010.08.064.
21. Monceau D., Oquab D., Estourns C., Boidot M. et al. Thermal barrier systems and multi-layered coatings fabricated by spark plasma sintering for the protection of Ni-base superalloys. Materials Science Forum. 2010. Vol. 654-656. pp. 1826–1831. DOI: 10.4028/www.scientific.net/MSF.654-656.1826.
22. Kulmetieva V. B., Porozova S. E., Gnedina E. S. Synthesis of nanocrystalline zirconium dioxide stabilized with yttrium oxide for low-temperature sintering. Russian Journal of Non-Ferrous Metals. 2013. Vol. 54, No. 3. pp. 239–245. DOI: 10.3103/S1067821213030097.
23. GOST 9450–76. Measuring microhardness by diamond instruments indentation. Introduced: 01.01.1997.
24. Oglezneva S. A., Smetkin A. A., Kachenyuk M. N. Production of the gradient material Inconel 625 with an external ceramic layer for thermal barrier coatings by spark plasma sintering. Composite materials constructions. 2020. Iss. 4(160). pp. 28–31.
25. Kaschnitz E., Kaschnitz L., Heugenhauser S. Electrical resistivity measured by millisecond pulse heating in comparison with thermal conductivity of the superalloy inconel 625 at elevated temperature. International Journal of Thermophysics. 2019. Vol. 40, Iss. 3. pp. 27–40. DOI: 10.1007/s10765-019-2490-8.
26. Schlichting K. W., Padture N. P., Klemens P. G. Thermal conductivity of dense and porous yttria-stabilized zirconia. Journal of Materials Science. 2001. Vol. 36. pp. 3003–3010. DOI: 10.1023/A:1017970924312.

Language of full-text русский
Полный текст статьи Получить