Journals →  Obogashchenie Rud →  2021 →  #5 →  Back

ArticleName Effects of massive electromagnetic pulses on the structural and chemical properties and leaching efficiency of eudialyte concentrate
DOI 10.17580/or.2021.05.03
ArticleAuthor Bunin I. Zh., Ryazantseva M. V., Minenko V. G., Samusev A. L.

Melnikov Institute of Comprehensive Exploitation of Mineral Resources of Russian Academy of Sciences (Moscow, Russia):

Bunin I. Zh., Leading Researcher, Doctor of Engineering Sciences
Ryazantseva M. V., Senior Researcher, Candidate of Engineering Sciences
Minenko V. G., Leading Researcher, Candidate of Engineering Sciences,
Samusev A. L., Senior Researcher, Candidate of Engineering Sciences


Scanning electron microscopy (SEM) and infrared spectroscopy (IR) were used to study the influence of high-power nanosecond electromagnetic pulses (HPEMP) and dielectric barrier discharges (DBD) in air at the atmospheric pressure on the structural and chemical properties of eudialyte. The spectral data analysis has shown that highintensity electric fields initiate mineral surface fracturing due to the weakening and/or breaking of bonds in the structural fragments of the mineral framework (presumably, Si10O27, and Si9MO30). According to the SEM data, HPEMPs cause sample surface strength reduction with the formation of new surface reliefs in the range from parallel (texp = 30 s) to polygonal fractured shapes (texp = 60 and 90 s), depending on the electromagnetic pulse exposure time texp. Eudialyte grain micromorphology after the treatment under DBD conditions is distinctively characterized by the presence of imprints of electrical current breakdown microchannels of up to 3–4 μm, with practically no microcracks or other defects occurring on the mineral surface. The intensifying effect of high-power electromagnetic pulses on the process of eudialyte concentrate acid leaching has been experimentally established. Zirconium recovery into the pregnant solution is improved by 3.4 to 4.3 % through HPEMP pretreatment and by 4.0 % through DBD exposure, with the total recovery of rare earth elements increasing by 1.1 to 1.7 %.
This work was financially supported by the Ministry of Science and Higher Education of the Russian Federation, project No. 13.1902.21.0018 (agreement No. 075-15-2020-802).

keywords Eudialyte, rare and rare earth metals, electromagnetic pulse effects, infrared spectroscopy, scanning electron microscopy, acid leaching, recovery

1. Kryukov V. A., Tolstov A. V., Samsonov N. Yu. Strategic importance of rare earth metals in the world and in Russia. ECO. 2012. No. 11. pp. 5–16.
2. Samsonov N. Yu., Semyagin I. N. World and Russian rare earth market survey. ECO. 2014. No. 2. pp. 45–54.
3. Zakharov V. I., Skiba G. S., Solovyov A. V., Lebedev V. N., Mayorov D. V. Some aspects of eudialyte acid processing. Tsvetnye Metally. 2011. No. 11. pp. 25–29.
4. Zakharov V. I., Maiorov D. V., Alishkin A. R., Matveev V. A. Causes of insufficient recovery of zirconium during acidic processing of Lovozero eudialyte concentrate. Izvestiya Vysshikh Uchebnykh Zavedeniy. Tsvetnaya Metallurgiya. 2011. No. 5. pp. 26–31.
5. Savel’eva I. L. The rare-earth metals industry of Russia: Present status, resource conditions of development. Geographyand Natural Resources. 2011. Vol. 32. pp. 65–71.
6. Kuleshevich L. V., Dmitrieva A. V. Rare-earth mineralization in Karelia’s alkaline and moderately alkaline complexes, associated metasomatic rocks and ores. Gornyi Zhurnal. 2019. No. 3. pp. 45–50. DOI: 10.17580/gzh.2019.03.09.
7. Davris P., Stopic S., Balomenos E., Panias D., Paspalia-ris I., Friedrich B. Leaching of rare earth elements from eudialyte concentrate by suppressing silica gel formation. Minerals Engineering. 2017. Vol. 108. pp. 115–122.
8. Balinski A., Atanasova P., Wiche O., Kelly N., Reuter M. A., Scharf C. Recovery of REEs, Zr(+Hf), Mn and Nb by H2SO4 leaching of eudialyte concentrate. Hydrometallurgy. 2019. Vol. 186. pp. 176–186.
9. Ma Yi., Stopic S., Gronen L., Milivojevic M., Obradovic S., Friedrich B. Neural network modeling for the extraction of rare earth elements from eudialyte concentrate by dry digestion and leaching. Metals. 2018. Vol. 267, No. 8. DOI: 10.3390/met8040267.
10. Da Silva R. G., de Morais C. A., Teixeira L. V., de Oliveira É. D. Selective removal of impurities from rare earth sulphuric liquor using different reagents. Minerals Engineering. 2018. Vol. 127. pp. 238–246.
11. Demol J., Ho E., Soldenhoff K., Senanayake G. The sulfuric acid bake and leach route for processing of rare earth ores and concentrates: A review. Hydrometallurgy. 2019. Vol. 188. pp. 123–139.
12. Das S. K., Angadi S. I., Kundu T., Basu S. Mineral processing of rare earth ores. Rare-earth metal recovery for green technologies. Cham: Springer, 2020. pp. 9–38.
13. Bogatyreva E. V., Chub A. V., Ermilov A. G., Khokhlova O. V. The efficiency of alkaline-acid method of complex leaching of eudialyte concentrate. Part 1. Tsvetnye Metally. 2018. No. 7. pp. 57–61. DOI: 10.17580/tsm.2018.07.09.
14. Bogatyreva E. V., Chub A. V., Ermilov A. G., Khokhlova O. V. The efficiency of alkaline-acid method of complex leaching of eudialyte concentrate. Part 2. Tsvetnye Metally. 2018. No. 8. pp. 69–74. DOI: 10.17580/tsm.2018.08.09.
15. Chanturiya V. A., Minenko V. G., Samusev A. L., Chanturia E. L., Koporulina E. V., Bunin I. Zh., Ryazantseva M. V. The effect of energy impacts on the acid leaching of eudialyte concentrate. Mineral Processing and Extractive Metallurgy Review. 2020. Vol. 42, Iss. 7. 12 p. DOI: 10.1080/08827508.2020.1793141.
16. Chanturia V. A., Chanturia E. L., Minenko V. G., Samusev A. L. Acid leaching process intensification for eudialyte concentrate based on energy effects. Obogashchenie Rud. 2019. No. 3. pp. 29–36. DOI: 10.17580/or.2019.03.05.
17. Bobkova E. S., Khodor Ya. V., Kornilova O. N., Rybkin V. V. Chemical composition of plasma of dielectric barrier discharge at atmospheric pressure with a liquid electrode. Teplofizika Vysokikh Temperatur. 2014. Vol. 52, No. 4. pp. 535–542.
18. Chanturiya V. A., Minenko V.G., Koporulina E. V., Ryazantseva M. V., Samusev A. L. Influence of acids on extraction efficiency of zirconium and rare earth metals in eudialyte concentrate leaching. Journal of Mining Science. 2019. Vol. 55, Iss. 6. pp. 984–994.
19. Rastsvetaeva R. K., Chukanov N. V., Pekov I. V., Varlamov D. A. Structural features of potential new mineral of eudialyte group from the Lovozero massif, Kola Peninsula. Vestnik Geonauk. 2020. No. 1. pp. 3–7.

Language of full-text russian
Full content Buy