Журналы →  Obogashchenie Rud →  2021 →  №5 →  Назад

BENEFICIATION PROCESSES
Название Sonochemical activation of amine hydrochloric acid solution used as a collector in sylvinite ore flotation
DOI 10.17580/or.2021.05.04
Автор Poilov V. Z., Burov V. E., Gallyamov A. N., Fedotova O. A.
Информация об авторе

Perm National Research Polytechnic University (PNRPU) (Perm, Russia):

Poilov V. Z., Professor, Doctor of Engineering Sciences
Burov V. E., Postgraduate, vladimire.burov@gmail.com
Gallyamov A. N., Student
Fedotova O. A., Associate Professor, Candidate of Engineering Sciences

Реферат

This paper covers the problems of improving the efficiency of a specific flotation reagent (amine hydrochloric acid solution) through the dispersion of floccules using preliminary sonochemical activation. The influence of various combinations of acoustic power (from 168 to 420 W in increments of 84 W) and ultrasound exposure time (30, 60 and 150 s) on the physical and chemical characteristics of the mineral/flotation reagent system has been studied. The results demonstrate that preliminary ultrasonic exposure of the reagent reduces the size of amine hydrochloric acid floccules. This, in turn, increases the specific surface area of collector micelles, improving the reagent distribution on the mineral surface. The contact angles for KCl particles were measured after the sonochemical activation and after the amine adsorption, which confirmed better hydrophobization of the sylvite mineral surface. It has been found that higher power values and ultrasonic exposure times produce a more electropositive zeta potential of the reagent solution. It has also been established that the use of a pre-activated solution of hydrochloric acid amine improves KCl recovery as compared with the use of a non-activated flotation reagent. The efficiency of ultrasonic activation of the amine emulsion used at potash flotation plants has been assessed. A positive effect of preliminary ultrasonic exposure of the emulsion on the KCl flotation process was established.
The study was carried out with the financial support of the Ministry of Education and Science of the Russian Federation as part of the implementation of the program of activities of the world-class scientific and educational center "Rational Subsoil Use".

Ключевые слова Froth flotation, flotation reagents, sylvite, potassium chloride, sonochemical activation, hydrochloric amine, contact angle, zeta potential, recovery
Библиографический список

1. Huang Z., Cheng C., Zhong H., Li L., Guo Z. Flotation of sylvite from potash ore by using the Gemini surfactant as a novel flotation collector. Minerals Engineering. 2019. Vol. 132. pp. 22–26.
2. Li E., Du Z., Yuan S., Cheng F. Low temperature molecular dynamic simulation of water structure at sylvite crystal surface in saturated solution. Minerals Engineering. 2015. Vol. 83. pp. 53–58.
3. Li E., Du Z., Li D. Specific ion effects of salt solutions on colloidal properties of octadecylamine hydrochloride. Journal of Surfactants and Detergents. 2017. Vol. 20, No. 2. pp. 483–491.
4. Baturin E. N., Menshikova E. A., Blinov S. M., Naumov D. Yu., Belkin P. A. Problems of the development of the world largest potash deposits. Sovremennye Problemy Nauki i Obrazovaniya. 2012. No. 6. pp. 613–621.
5. Dikhtievskaya L. V., Shlomina L. F., Osipova E. O., Shevchuk V. V., Mozheyko F. F. Flotation enrichment of potash ores of different mineralogical composition. Izvestiya Natsionalnoy Akademii Nauk Belarusi. Seriya Khimicheskikh Nauk. 2019. Vol. 55, No. 3. pp. 277–287.
6. Du H., Ozdemir O., Wang X., Cheng F., Celik M. S., Miller J. D. Flotation chemistry of soluble salt minerals: from ion hydration to colloid adsorption. Mining, Metallurgy & Exploration. 2014. Vol. 31, No. 1. pp. 1–20.
7. Aliferova S., Titkov S., Sabirov R., Novoselov V., Panteleeva N. Application of nonionic surface-active substances in combination with acrylamide flocculants for silicate and carbonate mineral flotation. Minerals Engineering. 2005. Vol. 18, No. 10. pp. 1020–1023.
8. Albijanic B., Ozdemir O., Hampton M. A., Nguyen A. V., Bradshaw D. Fundamental aspects of bubble–particle attachment mechanism in flotation separation. Minerals Engineering. 2014. Vol. 65. pp. 187–195.
9. Bulatovic S. M. Handbook of flotation reagents: chemistry, theory and practice: flotation of sulfide ores. Amsterdam: Elsevier, 2007. 446 p.
10. Cao Q., Du H., Miller J. D., Cheng F. Surface chemistry features in the flotation of KCl. Minerals Engineering. 2010. Vol. 23, No. 5. pp. 365–373.
11. Burov V. E., Gallyamov A. N., Fedotova O. A., Poilov V. Z. Effect of ultrasonic processing on the amine hydrochetic solution a foaming ability. Vestnik Permskogo Natsionalnogo Issledovatelskogo Politekhnicheskogo Universiteta. Khimicheskaya Tekhnologiya i Biotekhnologiya. 2020. No. 4. pp. 133–147.
12. Osipovich A. E., Vakhrushev V. V., Kazantsev A. L., Poilov V. Z., Aliferova S. N. Ultrasonic treatment influence on aqeous emulsion of amine hydrochloride. Vestnik Permskogo Natsionalnogo Issledovatelskogo Politekhnicheskogo Universiteta. Khimicheskaya Tekhnologiya i Biotekhnologiya. 2014. No. 3. pp. 89–96.
13. Chen Y., Truong N. T., Bu X., Xie G. A review of effects and applications of ultrasound in mineral flotation. Ultrasonics Sonochemistry. 2020. Vol. 60. p. 104739.
14. Videla A. R., Morales R., Saint-Jean T., Gaete L., Vargas Y., Miller J. D. Ultrasound treatment on tailings to enhance copper flotation recovery. Minerals Engineering. 2016. Vol. 99. pp. 89–95.
15. Gungoren C., Ozdemir O., Wang X., Ozkan S. G., Miller J. D. Effect of ultrasound on bubble-particle interaction in quartz-amine flotation system. Ultrasonics Sonochemistry. 2019. Vol. 52. pp. 446–454.
16. Gungoren C., Baktarhan Y., Demir I., Ozkan S. G. Enhancement of galena-potassium ethyl xanthate flotation system by low power ultrasound. Transactions of Nonferrous Metals Society of China. 2020. Vol. 30, No. 4. pp. 1102–1110.
17. Markov V. F., Alekseeva T. A., Brusnitsyna L. A., Maskaeva L. N. Colloidal chemistry: examples and tasks. Ekaterinburg: UrFU, 2015. 188 p.
18. Kursun H., Ulusoy U. Zinc recovery from a lead–zinc–copper ore by ultrasonically assisted column flotation. Particulate Science and Technology. 2015. Vol. 33, No. 4. pp. 349–356.
19. Sorokin M. M. Flotation methods of beneficiation. Chemical bases of flotation. Moscow: MISiS, 2011. 411 p.
20. Kolpaschikov I. G., Vakhrushev V. V., Kazantsev A. L., Potapov I. S., Poilov V. Z., Aliferova S. N. Adsorption investigation of activated amine hydrochloride solution on powder KCl. Vestnik Permskogo Natsionalnogo Issledovatelskogo Politekhnicheskogo Universiteta. Khimicheskaya Tekhnologiya i Biotekhnologiya. 2015. No. 1. pp. 40–48.
21. Cao Q., Cheng J., Feng Q., Wen S., Luo B. Surface cleaning and oxidative effects of ultrasonication on the flotation of oxidized pyrite. Powder Technology. 2017. Vol. 311. pp. 390–397.
22. Xu M., Xing Y., Gui X., Cao Y., Wang D., Wang L. Effect of ultrasonic pretreatment on oxidized coal flotation. Energy Fuels. 2017. Vol. 31, No. 12. pp. 14367–14373.
23. Deb Barma S., Sathish R., Baskey P. K., Biswal S. K. Chemical beneficiation of high-ash Indian noncoking coal by alkali leaching under low-frequency ultrasonication. Energy Fuels. 2018. Vol. 32, No. 2. pp. 1309–1319.
24. Deb Barma S. Ultrasonic-assisted coal beneficiation: a review. Ultrasonics Sonochemistry. 2019. Vol. 50. pp. 15–35.

Language of full-text русский
Полный текст статьи Получить
Назад