Journals →  Gornyi Zhurnal →  2021 →  #11 →  Back

ArticleName Energy-efficient equipment for disintegration of extremely strong materials
DOI 10.17580/gzh.2021.11.07
ArticleAuthor Shishkin E. V., Kazakov S. V.

Saint Petersburg Mining University, Saint Petersburg, Russia:

E. V. Shishkin, Associate Professor, Candidate of Engineering Sciences


Mekhanobr Tekhnika Research and Engineering Corporation, Saint Petersburg, Russia:

S. V. Kazakov, Leading Designing Engineer, Candidate of Engineering Sciences,


This research aims to reduce the power input of strong material disintegration and to improve the final product quality. The energy-efficient method of disintegration is proposed for extremely strong materials and industrial waste using vibropercussion crushers composed of two mobile crushing bodies free from stiff kinematic links and operating in strictly synchronous phase opposition. The crushers implement the phenomenon of self-synchronization of drive unbalance-mass vibration generators, which greatly simplifies the design and lowers the dynamic loads imposed on the machine components. The influence exerted by the material under treatment on the dynamics of vibropercussion crushers is studied. In particular, the procedure is developed for the while-in-operation calculation of the viscous resistance coefficient and, as a consequence, average vibration amplitudes of effectors of the machine with regard to the loading. The common method of taking the influence of the process material on the vibration machine dynamics in the form of a linear viscous damper is inapplicable in case of vibropercussion systems and needs amendment. The conditions of steady-state synchronous co-phase rotation of vibration generators are determined. Alternatively, performance of the crushers drops down to total failure of crushing. The recommendations on selecting science-based geometrical and inertia parameters for the vibropercussion crushers are given. The recommendations should be taken into account in the machine design and engineering to ensure efficient and reliable steady-state operation. The study is implemented using the approach of vibration engineering and theory of synchronization of mechanical vibration generators. The theoretical results are compared with the experimental data.

keywords Vibropercussion crushers, mechanical vibration generator, disintegration, technical load, self-synchronization, linear viscous damper, vibration mechanics

1. Vaisberg L. A., Kruppa P. I., Baranov V. F. Main trends in development of the disintegration processes in the 21st century. Obogashchenie Rud. 2002. No. 3. pp. 3–10.
2. Chanturia V. A., Bocharov V. A. Modern state and basic ways of technology development for complex processing of non-ferrous mineral raw materials. Tsvetnye Metally. 2016. No. 11. pp. 11–18. DOI: 10.17580/tsm.2016.11.01
3. Bortnikov A. V., Samukov A. D. Vibration disintegration in ore-crushing at concentrators. Obogashchenie Rud. 2018. No. 5. pp. 3–10. DOI: 10.17580/or.2018.05.01
4. Harder J. Trends in the Crushing of Mineral Ores. Mineral Processing. 2016. No. 5. Р. 21–26.
5. Yusupov T. S., Afanasenko S. I. Intensified processing of concentration products using a planetary mill. Obogashchenie Rud. 2018. No. 6. pp. 9–13. DOI: 10.17580/or.2018.06.02
6. Revnivtsev V. I., Denisov G. A., Zarogatskiy L. P., Turkin V. Ya. Vibrational disintegration of solid materials. Moscow : Nedra, 1992. 430 p.
7. Denisov G. A., Zarogatskiy L. P., Turkin V. Ya. Equipment and technologies of vibration milling of materials having different physical properties. Saint-Petersburg, 1992. 119 p.
8. Vaisberg L. A., Zarogatskiy L. P., Safronov A. N. Vibrating equipment for mineral and waste disintegration. Journal of Mining Institute. 2001. Vol. 148, No. 1. pp. 77–82.
9. Vaysberg L. A., Zarogatskiy L. P., Turkin V. Ya. Vibrational crushers. Bases for design, engineering and technological applications. Saint-Petersburg : Izdatelstvo VSEGEI, 2004. 306 p.
10. Vaisberg L. A., Zarogatskiy L. P. New generation of jaw and cone crushers. Stroitelnye i dorozhnye mashiny. 2000. No. 7. pp. 16–21.
11. Vaisberg L. A. Design and engineering of vibration machines. Vibrations in engineering : Handbook. Moscow : Mashinostroenie, 1981. Vol. 4. Vibration processes and machines. pp. 135–145.
12. Blekhman I. I. Synchronization of dynamical systems. Moscow : Nauka, 1971. 896 pp.
13. Nagaev R. F., Guzev V. V. Self-synchronization of inertia-based vibration generators. Leningrad : Mashinostroenie, 1990. 178 p.
14. Loitsyansky L. G., Lurie A. I. Course on theoretical mechanics : tutorial. 7th enlarged and revised edition. Moscow : Drofa, 2006. Vol. 2. Dynamics. 721 p.
15. Lurie A. I. Analytical Mechanics. Moscow : Fizmatgiz, 1961. 824 p.
16. Yablonskiy A. A., Nikiforova V. M. Course on theoretical mechanics : tutorial. 13th enlarged edition. Moscow : Integral-Press, 2006. 603 p.
17. Babakov I. M. Theory of vibrations : tutorial. 4th enlarged edition. Moscow : Drofa, 2004. 592 p.
18. Babitskiy V. I. Theory of vibropercussion systems. Moscow : Nauka, 1978. 352 p.

19. Barzukov O. P., Vaisberg L. A., Balabatko L. I., Uchitel A. D. Influence of technological load on selfsynchronization of vibration exciters. Obogashchenie Rud. 1978. No. 2. pp. 31–33.
20. Vaisberg L. A. Design and calculation of vibration screens. Moscow : Nedra, 1986. 145 p.
21. Dresig H., Fidlin A. Schwingungen mechanischer Antriebssysteme: Modellbildung, Berechnung, Analyse, Synthese. Berlin : Springer, 2014. 651 p.
22. Blekhman I. I., Blekhman L. I., Vasilkov V. B., Ivanov K. S., Yakimova K. S. Upon equipment wear under conditions of vibration and impact load. Obogashchenie Rud. 2011. No. 6. pp. 40–45.
23. Sperling L., Merten F., Duckstein H. Rotation und Vibration in Beispielen zur Methode der direkten Bewegungsteilung. Technische Mechanik. 1997. Band 17, Heft. 3. ss. 231–243.
24. Chernysheva N., Platovskikh M., Yungmeister D. Study of the Effectiveness of the Vibro-Impact System “Piston-striker-sh ank” in the Constructi on of Pneumatic and Hydraulic Hammers for the Subway Driving Complexes. Procedia Engineering. 2016. Vol. 165. pp. 1254–1260.
25. Gavrilov Yu. A., Zagrivnyi E. A. The autoresonant electric drive of the swinging movement pendular vibration exciter vibration jaw crushers. Journal of Mining Institute. 2010. Vol. 186. pp. 116–119.
26. Chernysheva N. V., Platovskikh M. J., Vetyukov M. M. Frictional self-oscillations of the one – two degree of freedom systems. Journal of Physics: Conference Series. 2019. Vol. 1236. 012054. DOI: 10.1088/1742-6596/1236/1/012054
27. Tyagushev S. Yu., Shonin O. B. Experimental determination of vibration jaw crusher perfomance and characteristic of the crusher two-motor drive in no-load and nominal mode of operation. Journal of Mining Institute. 2010. Vol. 186. pp. 161–164.
28. Frolov K. V. (Ed.). Vibrations in engineering : Handbook. Мoscow : Маshinostroenie, 1981. Vol. 6. Protection from vibrations and impacts. 456 p.
29. Platovskikh M. J. Dynamic Model of the Two-Mass Active Vibroprotective System. Advances in Mechanical Engineering. Modern Engineering: Science and Education : Selected Contributions from the Conference. Series: Lecture Notes in Mechanical Engineering. Cham : Springer, 2015. pp. 85–92.
30. Blekhman I. I. Theory of vibration processes and devices. Vibration mechanics and vibration technology. Saint-Petersburg, 2013. 640 p.
31. Zniber A., Quinn D. D. Resonance capture in a damped three-degree-of-freedom system: Experimental and analytical comparison. International Journal of Non-Linear Mechanics. 2006. Vol. 41, Iss. 10. pp. 1128–1142.
32. Fidlin A., Drozdetskaya O. On the averaging in strongly damped systems: the general approach and its application to asymptotic analysis of the Sommerfeld effect. Procedia IUTAM : IUTAM Symposium Analytical Methods in Nonlinear Dynamics. Amsterdam : Elsevier, 2016. Vol. 19. pp. 43–52 .
33. Rand R. H., Kinsey R. J., Mingori D. L. Dynamics of spinup through resonance. International Journal of Non-Linear Mechanics. 1992. Vol. 27, Iss. 3. pp. 489–502.
34. Blekhman I. I., Vasilkov V. B., Ya roshevich N. P. On some opportunities for improving vibration machines with self-synchronizing inert vibration exciters. Journal of Machinery Manufacture and Reliability. 2013. Vol. 42, No. 3. pp. 192–195.
35. Blekhman I. I. Vibrational Mechanics. Nonlinear Dynamic Effects, General Approach, Applications. Singapore : World Scientific Publishing Co. Pte. Ltd., 2000. 536 p.
36. Nagaev R. F. Quasi-conservative synchronizing systems. Saint-Petersburg : Nauka, 1996. 251 p.
37. Nagaev R. F. Месhаniсаl Prосеsses with Rереаtеd Attenuated Impacts. Singapore : World Scientific Publishing Co. Pte. Ltd., 1999. 256 p.
38. Blekhman I. I., Indeitsev D. A., Fradkov A. L. Slow motions in systems with inertial excitation of vibrations. Journal of Machinery Manufacture and Reliability. 2008. Vol. 37, No. 1. pp. 21–27.
39. Blekhman I. I. Vibrational mechanics and vibrational rheology (theory and applications). Moscow : Fizmatlit, 2018. 752 p.

Language of full-text russian
Full content Buy