Журналы →  Chernye Metally →  2021 →  №12 →  Назад

Pipe production
Название Modern development of elements of theory, technology and mini-mills of radial-shear rolling
DOI 10.17580/chm.2021.12.09
Автор S. P. Galkin, Yu. V. Gamin, A. S. Aleshchenko, B. A. Romantsev
Информация об авторе

National University of Science and Technology “MISiS” (Moscow, Russia):

S. P. Galkin, Dr. Eng., Professor, Metal Forming Dept., e-mail: glk-omd@yandex.ru
Yu. V. Gamin, Cand. Eng., Associate Professor, Metal Forming Dept., e-mail: y.gamin@mail.ru
A. S. Aleshchenko, Cand. Eng., Associate Professor, Head pf the Metal Forming Dept., e-mail: judger85@mail.ru
B. A. Romantsev, Dr. Eng., Professor, Metal Forming Dept., e-mail: boralr@yandex.ru


Formulas for calculating the trajectory deformation coefficients during radial-shear rolling are presented in an analytical form, which make it possible to estimate the gradient of the deformation-kinematic state of the metal under conditions of helicoidal flow. The layer-by-layer nature of the change in the metal flow rate, coefficients, intensity, and deformation schemes has been established. An expression for evaluating the rotational deformation is obtained. The basic schemes for setting up symmetrical three-roll calibers used in the RSR minimills are presented. The technical characteristics of the modern line of RSR minimills designed by MISIS are presented. The basic arrangement of mills 30-70 and 90-220 is described, which significantly expands the dimensional range of rolling diameters on RSR minimills. Effective technological solutions based on RSR, implemented in practice, are discussed. In particular, in the field of creating low-cost technologies for recycling and secondary use of lengthy machine-building parts taken out of service. On the example of minimill 90-220 of a special design, the possibility of using RSR for preliminary deformation of continuously cast billets under the conditions of an operating industrial PRP-160 with a three-roll rolling mill is shown.

Ключевые слова Radial-shear rolling, trajectory, deformation coefficients, deformation scheme, speed, gradient structure, rolling minimill, roll adjustment, recycling, deformation of continuously cast billets
Библиографический список

1. Potapov I. N., Polukhin P. I. Helical rolling technology. Moscow: Metallurgiya, 1990. 334 p.
2. Galkin S. P. Theory and technology of stationary screw rolling of billets and rods of low-plasticity steels and alloys: thesis of inauguration of Dissertation… of Doctor of Engineering Sciences. Moscow: MISiS, 1998. 41 p.
3. Gamin Y. V., Muñoz Bolaños J. A., Aleschenko A. S. et al. Influence of the radial-shear rolling (RSR) process on the microstructure, electrical conductivity and mechanical properties of a Cu – Ni – Cr – Si alloy. Materials Science and Engineering : A. 2021. Vol. 822. p. 14.
4. Gamin Y. V., Akopyan T. K., Koshmin A. N. et al. Microstructure evolution and property analysis of commercial pure Al alloy processed by radial-shear rolling. Archives of Civil and Mechanical Engineering. 2020. Vol. 20. No. 143.
5. Naizabekov A. B., Lezhnev S. N., Panin E. Formation of a gradient structure in austenitic stainless steel AISI 321 by radial-shear rolling. Journal of Materials Processing Technology. 2021. Vol. 316. pp. 246–251.
6. Galkin S. P. Screw rolling method. Patent RF, No. 2293619. Published: 20.02.2007.
7. Pavlov I. М. Rolling theory. Moscow: Metallurgizdat, 1950. 610 p.
8. Galkin S. P., Romantsev B. A., Kharitonov E. A. Putting into practice innovative potential in the universal radial-shear rolling process. CIS Iron and Steel Review. 2014. Vol. 9. pp. 35–39.
9. Romantsev B. A., Galkin S. P., Mikhajlov V. K., Khloponin V. N., Koryshev A. N. Bar micromill. Steel in Translation. 1995. Vol. 2. pp. 40–42.
10. Lezhnev S. N., Naizabekov A. B., Panin E. A. et al. Graded microstructure preparation in austenitic stainless steel during radial-shear rolling. Metallurgist. 2021. Vol. 64. No. 11–12. pp. 1150–1159.
11. Arbuz A., Kawalek A., Ozhmegov K., Dyja H., Panin E. et al. Using of radial-shear rolling to improve the structure and radiation resistance of zirconium-based alloys. Materials. 2020. Vol. 13. Iss. 19.
12. Naizabekov A., Volokitina I., Lezhnev S. et al. Structure and mechanical properties of AISI1045 in the helical rolling–pressing process. Journal of Materials Engineering and Performance. 2020. Vol. 29. Iss. 1. pp. 315–329.
13. Naizabekov A. B., Lezhnev S. N., Arbuz A. S., Panin E. A., Koinov T. A. Simulation of radial-shear rolling of austenitic stainless steel AISI-321. Journal of Chemical Technology and Metallurgy. Vol. 54. Iss. 5. pp. 1086–1094.
14. Stefanik A., Szota P., Mróz S. Analysis of the effect of rolling speed on the capability to produce bimodal-structure AZ31 alloy bars in the three-high skew rolling mill. Archives of Metallurgy and Materials. 2020. Vol. 65. Iss. 1.pp. 329–335.
15. Pater Z., Tomczak J., Bulzak T., Wójcik L., Skripalenko M. M. Prediction of ductile fracture in skew rolling processes. International Journal of Machine Tools and Manufacture. 2021. Vol. 163. p. 16.
16. Stefanik A., Szota P., Mroz S., Dyja H. Application of the three-high skew rolling to magnesium rods production. Materials Testing. 2016. Vol. 58. Iss. 5. pp. 438–441.
17. Stefanik A., Szota P., Mróz S., Dyja H. Analysis of the aluminum bars in three-high skew rolling mill rolling process. Solid State Phenomena. 2015. Vol. 220–221. pp. 892–897.
18. Bajor T., Kulakowska A., Dyja H. Analysis of the rolling process of alloy 6005 in a three-high skew rolling mill. Materials. 2020. Vol. 13. Iss. 5. pp. 892–897.
19. Naydenkin E. V., Mishin I. P., Ratochka I. V., Oborin V. A., Bannikov M. V. et al. Fatigue and fracture behavior of ultrafine-grained near β titanium alloy produced by radial shear rolling and subsequent aging. Materials Science and Engineering : A. 2020. Vol. 300. pp. 1–4.
20. Mishin I. P., Naydenkin E. V., Ratochka I. V., Lykova O. N., Vinokurov V. A. et al. Effect of radial shear rolling and aging on the structure and mechanical properties of titanium alloy VT35. Paper presented at the AIP Conference Proceedings. 2020. Vol. 2310. Iss. 1.
21. Romantsev B. A., Gamin Y. V., Goncharuk A. V. et al. Innovative equipment for producing costeffective hollow billets for mechanical-engineering parts of small diameter. Metallurgist. 2017. Iss. 3–4. pp. 217–222.
22. Galkin S. P., Romantsev B. A., Borowikow A. New inline process for thermomechanical treatment of steel bars. CIS Iron and Steel Review. 2012. Vol. 7. pp. 16-20.
23. Galkin S. P., Romantsev B. А., Smerdin V. N., Averyanov А. А., Nekrasov М. V. Innovative technology for recycling sucker rods using technology and mini-mills for radial-shear rolling in the conditions of OJSC “Ochersky Machine-Building Plant”. Inzhenernaya praktika. 2014. No. 9. pp. 58–61.
24. Galkin S. P., Romantsev B. А., Та D. X., Gamin Yu. V. Resource-saving technology for production of round bars from used shaft of rolling railroad stock. Chernye Metally. 2018. No. 4. pp. 21–27.
25. Galkin S. P., Aleschenko A. S., Romantsev B. A. et al. Effect of preliminary deformation of continuously cast billets by radial-shear rolling on the structure and properties of hot-rolled chromium-containing steel pipes. Metallurgist. 2021. Vol. 65. pp. 185–195.
26. Iskhakov R. V., Gamin Y. V., Kadach M. V., Budnikov A. S. Development of radial-shear rolling mill special stands for continuous cast billets deformation. IOP Conference Series: Materials Science and Engineering. 2020. Vol. 966. Iss. 1.

Language of full-text русский
Полный текст статьи Получить