Журналы →  Цветные металлы →  2022 →  №4 →  Назад

Автоматизация
Название Учет конвективного тепло- и массообмена в реакторах-автоклавах при масштабировании гидротермальных и гидрометаллургических процессов
DOI 10.17580/tsm.2022.04.10
Автор Шариков Ф. Ю.
Информация об авторе

Санкт-Петербургский горный университет, Санкт-Петербург, Россия:

Ф. Ю. Шариков, ведущий научный сотрудник, канд. хим. наук, эл. почта: felix101t@mail.ru

Реферат

Предложено решение проблемы масштабирования процесса гидротермального синтеза дисперсных неорга нических материалов различных классов, разработана процедура выбора технологического режима для реактора-автоклава заданного размера, основанная на экспериментальном исследовании кинетики гидротермальных реакций с использованием in situ калориметрии теплового потока, с получением математической модели реакции и последующим моделированием поля температур и конверсий в аппаратах различного размера для выбранного режима. Показано, что в аппаратах периодического действия без механического перемешивания при нагреве реакционной смеси через стенки движущей силой тепло- и массообмена является конвекция, которая формирует существенно неоднородные температурные и концентрационные поля внутри аппарата в условиях нестационарного прогрева реакционной массы, что, в свою очередь, может являться причиной невоспроизводимости фазового и гранулометрического составов, а также негативно влиять на процесс формирования тонкой кристаллической структуры продуктов синтеза. Применение оптимального режима нагрева с линейным программированием температуры на стенке реактора-автоклава создает стационарное поле температур и концентраций внутри аппарата, позволяет контролировать текущую конверсию по сечению аппарата и свести к минимуму соответствующие градиенты в конечной точке. Для гидрометал лургического процесса в аппарате с механическим перемешиванием также можно оценить перегрев реакционной смеси в зависимости от типа аппарата (периодический или проточный) и условий теплообмена. Разработанный подход позволяет подобрать оптимальный технологический режим для гидротермального или гидрометаллургического процесса в реакторе-автоклаве при получении конкретного продукта с использованием кинетической модели реакции, сопро вождающейся выделением или поглощением тепла.

Автор благодарит руководство Санкт-Петербургского Горного университета за создание условий и всестороннюю поддержку фундаментальных исследований процессов гидротермального синте за дисперсных неорганических материалов и работ по математическому моделированию реакций.

Ключевые слова Гидротермальный синтез, гидрометаллургический процесс, реактор-автоклав, дисперсные неорганические материалы, калориметрия теплового потока, кинетическая модель, естественная конвекция, поле температур
Библиографический список

1. Baranov A. N., Sokolov P. S., Lathe C. Nanocrystallinity as a route to metastable phases: Rock salt ZnO. Chemistry of Materials. 2013. Vol. 25, Iss. 9. pp. 1775–1782.
2. Sharikov F. Yu., Sokolov P. S., Baranov A. N., Solozhenko V. L. On the thermodynamic aspect of zinc oxide polymorphism: calorimetric study of metastable rock salt ZnO. Mendeleev Communications. 2017. Vol. 27. pp. 613–614.
3. Byrappa K., Yoshimura M. Handbook of Hydrothermal Technology. A Technology for Crystal Growth and Materials Processing. New York : William Andrew Publishing, 2000. 870 p.
4. Li W. J., Shi E. W., Fukuda T. Particle size of powders under hydrothermal conditions. Crystal Research and Technology. 2003. Vol. 38, Iss. 10. pp. 847–858.
5. Byrappa K., Adschiri T. Hydrothermal technology for nanotechnology. Progress in Crystal Growth and Characterization of Materials. 2007. Vol. 53, Iss. 2. pp. 117–166.
6. Litvinenko V. S. Digital Economy as a Factor in the Technological Development of the Mineral Sector. Natural Resources Research. 2020. Vol. 29, Iss. 3. pp. 1521–1541.
7. Beloglazov I. I., Petrov P. A., Bazhin V. Yu. The concept of digital twins for tech operator training simulator design for mining and processing industry. Eurasian Mining. 2020. Vol. 2020, Iss. 2. pp. 50–54. DOI: 10.17580/em.2020.02.12.
8. Demyanets L. N., Li L. E., Uvarova T. G. Zinc oxide: hydrothermal growth of nano- and bulk crystals and their luminescent properties. Journal of Materials Science. 2006. Vol. 41, Iss. 5. pp. 1439–1444.
9. Sue K., Kimura K., Arai K. Hydrothermal synthesis of ZnO nanocrystals using microreactor. Materials Letters. 2004. Vol. 58, Iss. 25. pp. 3229–3231.
10. Sharikov F. Yu., Shaporev A. S., Ivanov V. K. et al. Formation of highly dispersed ZnO powders under hydrothermal conditions. Russian Journal of Inorganic Chemistry. 2005. Vol. 50, Iss. 12. pp. 1822–1828.
11. Sharikov F. Yu., Ivanov V. K., Sharikov Yu. V., Tretyakov Yu. D. Mechanism and kinetics of the hydrothermal synthesis of titanium dioxide. Russian Journal of Inorganic Chemistry. 2006. Vol. 51, Iss. 12. pp. 1841–1845.

12. Meskin P. E., Baranchikov A. E., Ivanov V. K. et al. Ultrasonically activated hydrothermal synthesis of fine TiO2 and ZrO2 powders. Inorganic Materials. 2004. Vol. 40, Iss. 10. pp. 1058–1065.
13. Hummer D. R., Heaney P. J., Post J. E. In situ observations of particle size evolution during the hydrothermal crystallization of TiO2. Journal of Crystal Growth. 2012. Vol. 344, Iss. 1. pp. 51–58.
14. Zhang H., Banfield J. F. Understanding polymorphic phase transformation behavior during growth of nanocrystalline aggregates: Insights from TiO2. Journal of Physical Chemistry B. 2000. Vol. 104. pp. 3481–3487.
15. Meskin P. E., Gavrilov A. I., Maksimov V. D., Ivanov V. K. et al. Hydrothermal/microwave and hydrothermal/ultrasonic synthesis of nanocrystalline titania, zirconia, and hafnia. Russian Journal of Inorganic Chemistry. 2007. Vol. 52, No. 11. pp. 1648–1656.
16. Meskin P. E., Sharikov F. Yu., Ivanov V. K., Tretyakov Yu. D. et al. Rapid formation of nanocrystalline HfO2 powders from amorphous hafnium hydroxide under ultrasonically assisted hydrothermal treatment. Materials Chemistry and Physics. 2007. Vol. 104, Iss. 2–3. pp. 439–443.
17. Meskin P. E., Ivanov V. K., Barantchikov A. E. et al. Ultrasonically assisted hydrothermal synthesis of nanocrystalline ZrO2, TiO2, NiFe2O4 and Ni0.5Zn0.5Fe2O4 powders. Ultrasonics Sonochemistry. 2006. Vol. 13, Iss. 1. pp. 47–53.
18. Ivanov V. K., Polezhaeva O. S., Kopitsa G. P., Gil D. O. et al. Hydrothermal microwave synthesis of nanocrystalline cerium dioxide. Doklady Chemistry. 2009. Vol. 426, Iss. 2. pp. 131–133.
19. Ivanov V. K., Kopitsa G. P., Barantchikov A. E. et al. Hydrothermal growth of ceria nanoparticles. Russian Journal of Inorganic Chemistry. 2009. Vol. 54, Iss. 12. pp. 1857–1861.
20. Jancar B., Suvorov D. The influence of hydrothermal reaction parameters on the formation of chrysotile nanotubes. Nanotechnology. 2006. Vol. 17, No. 1. pp. 25–29.
21. Sharikov F. Yu., Korytkova E. N., Gusarov V. V. Effect of the thermal prehistory of components on the hydration and crystallization of Mg3Si2O5(OH)4 nanotubes under hydrothermal conditions. Glass Physics and Chemistry. 2007. Vol. 33, Iss. 5. pp. 515–520.
22. Kang M. O., Dong W. L., Smith R. I., O’Hare D. Time-resolved in situ neutron diffraction under supercritical hydrothermal conditions: a study of the synthesis of KTiOPO4. Journal of the American Chemical Society. 2012. Vol. 134. pp. 17889–17891.
23. Fedotov S. S., Samarin A. Sh., Antipov E. V. KTiOPO4-structured electrode materials for metal-ion batteries: A review. Journal of Power Sources. 2020. Vol. 480. p. 228840. DOI: 10.1016/j.jpowsour.2020.228840.
24. Fedotov S. S., Luchinin N. D., Aksyonov D. A., Morozov A.V., Ryazantsev S. V. et al. Titanium-based potassium-ion battery positive electrode with extraordinary high redox potential. Nature Communications. 2020. Vol. 11. p. 1484. DOI: 10.1038/s41467-020-15244-6.
25. Whittingham M. S. Lithium batteries and cathode materials. Chemical Reviews. 2004. Vol. 104, Iss. 10. pp. 4271–4301.
26. Chen J., Vacchio M. J., Wang S., Whittingham M. S. et al. The hydrothermal synthesis and characterization of olivines and related compounds for electrochemical applications. Solid State Ionics. 2008. Vol. 178, Iss. 31-32. pp. 1676–1693.
27. Sun Y. K., Chen Z. H., Noh H. J. et al. Nanostructured high-energy cathode materials for advanced lithium batteries. Nature Materials. 2012. Vol. 11. pp. 942–947. DOI: 10.1038/nmat3435.
28. Sharikov F. Yu., Drozhzhin O. A., Sumanov V. D., Baranov A. N., Abakumov A. M. et al. Exploring the peculiarities of LiFePO4 hydrothermal synthesis using in situ Calvet calorimetry. Crystal Growth & Design. 2018. Vol. 8, No. 2. pp. 879–882. DOI: 10.1021/acs.cdg.7b01366.
29. Hu L., Qiu B., Xia Y., Qin Z. et al. Solvothermal synthesis of Fe-doping LiMnPO4 nanomaterials for Li-ion batteries. Journal of Power Sources. 2014. Vol. 248. pp. 246–252.
30. Zhou L. M., Zhang K., Hu Z. et al. Recent developments on and prospects for electrode materials with hierarchical structures for lithium-ion batteries. Advanced Energy Materials. 2018. Vol. 8. p. 1701415. DOI: 10.1002/aenm.201701415.
31. Shakhova I., Rozova M. G., Burova D., Filimonov D. S., Drozhzhin O. A. et al. Microwave-assisted hydrothermal synthesis, structure and electrochemical properties of the Na3V2–yFeyО2x(PO4)2F3–2x electrode materials x for Na-ion batteries. Journal of Solid State Chemistry. 2020. Vol. 281. p. 121010. DOI: 10.1016/j.jssc.2019.121010.
32. Sharikov F. Yu. Application of Calvet calorimetry for studies into hydrothermal synthesis of nanocrystalline oxides of transition metals. Tsvetnye Metally. 2010. No. 7. pp. 73–77.
33. Sharikov Yu. V., Sharikov F. Yu., Titov O. V. Application of heat-flow calorimetry for developing mathematical models of reactor processes. Theoretical Foundations of Chemical Engineering. 2016. Vol. 50, Iss. 2. pp. 225–230.
34. Aylmore M. G., Muir D. M. Thiosulphate leaching of gold — A review. Minerals Engineering. 2001. Vol. 14, Iss. 2. pp. 135–174.
35. Kungurova V. E. Evaluating the effectiveness of fine gold extraction technologies on the example of titanomagnetite beach placers of the western coast of Kamchatka. Journal of Mining Institute. 2021. Vol. 252. pp. 840–853. DOI: 10.31897/PMI.2021.6.6.
36. Boduen A. Y., Fokina S. B., Petrov G. V., Andreev Y. V. Ammonia autoclave technology for the processing of low-grade concentrates generated in flotation concentration of cupriferous sandstones. Obogashchenie Rud. 2019. No. 2. pp. 33–38. DOI: 10.17580/or.2019.02.06.
37. Petrov G. V., Fokina S. B., Boduen A. Y. et al. Arsenic behavior in the autoclave-hydrometallurgical processing of refractory sulfide gold-platinumbearing products. International Journal of Engineering and Technology (UAE). 2018. Vol. 7, Iss. 2. pp. 35–39.
38. Petrov G. V., Boduen A. Y. Ammonia-Autoclave Processing Of Low-Sulfur Collective Concentrate from Udocan Deposit. International Journal of Advanced Science and Technology. 2020. Vol. 29, No. 9. pp. 4034–4040.
39. Feng D., van Deventer J. S. J. The effect of sulphur species on thiosulphate leaching of gold. Minerals Engineering. 2007. Vol. 20, Iss. 3. pp. 273–281. DOI: 10.1016/j.mineng.2006.10.001.
40. Breuer P. L., Jeffrey M. I. The reduction of copper(II) and the oxidation of thiosulfate and oxysulfur anions in gold leaching solutions. Hydrometallurgy. 2003. Vol. 70, Iss. 1-3. pp. 163–173.
41. Brill T. B. Geothermal Vents and Chemical Processing: The infrared spectroscopy of hydrothermal reactions. Journal of Physical Chemistry A. 2000. Vol. 104. pp. 4343–4351. DOI: 10.1021/jp993757p.
42. Gorbaty Yu. E., Bondarenko G. V., Venardou E. et al. Experimental spectroscopic high-temperature high-pressure techniques for studying liquid and supercritical fluids. Vibrational Spectroscopy. 2004. Vol. 35. pp. 97–101. DOI: 10.1016/j.vibspec.2003.12.002.
43. Xia F., Qian G., Brugge J. et al. A large volume cell for in situ neutron diffraction studies of hydrothermal crystallizations. Review of Scientific Instruments. 2010. Vol. 81. p. 105107.
44. Lupo F., Cockcroft J. K., Barnes P., Stukas P. et al. Hydrothermal crystallisation of doped zirconia: An in situ X-ray diffraction study. Physical Chemistry Chemical Physics. 2004. Vol. 6. pp. 1837–1841. DOI: 10.1039/B315219G.
45. Butcher J. C. Numerical methods for ordinary differential equations. 2 Edition. New Zealand : Wiley, 2003.
46. Soetaert K., Petzoldt T., Setzer R. W. Solving Differential Equations in R. The R Journal. 2010. Vol. 2/2. pp. 5–15.
47. Boussinesq J. Theorie analitique delachaleur. T. 2. Paris : Gauthier-Villars, 1903. 625 p.
48. Zeytonian R. The Boussinesq Approximation. Asymptotic Modeling of Atmospheric Flows. Springer-Verlag, Berlin, Heidelberg, 1990.
49. Gershuni G. Z., Zhukhovitskiy E. M., Nepomnyashchiy A. A. Stability of convective flows. Moscow : Nauka, 1989. 320 p.

Language of full-text русский
Полный текст статьи Получить
Назад