Журналы →  Gornyi Zhurnal →  2022 →  №4 →  Назад

Название Effect of genetic properties of Khiagda uranium deposits on the choice of in-situ leaching technologies
DOI 10.17580/gzh.2022.04.02
Автор Gladyshev A. V., Mikhailov A. N., Solodov I. N., Suvorov A. V.
Информация об авторе

VNIPIpromtekhnologii JSC, Moscow, Russia:

A. V. Gladyshev, CEO


Khiagda JSC, Chita, Russia:
A. N. Mikhailov, CEO
A. V. Suvorov, Chief Geologist


Atomredmetzoloto JSC, Moscow, Russia:

I. N. Solodov, Director of Innovative and Technological Development Programs, Doctor of Geological and Mineralogical Science, INSolodov@armz.ru


Hydrogenous uranium deposits of Khiagda ore field have no equal among commercial uranium reserves recovered by the in-situ leaching (ISL) technology. Khiagda JSC carries out ISL of uranium from four uranium deposits in Khiagda field, namely, Khiagda, Vershinnoe, Istochnoe and Kolichkan. As compared to ore occurrences in alluvium in large paleovalleys and in syneclise-type and grabensyncline type artesian basins in Uzbekistan, Southern Kazakhstan, South Australia and in the TransUrals, Khiagda ore field differs by the fact that uranium sources in the catchment area locate at a distance of a few tens of kilometers from the uranium concentration zones in the reducing geochemical barriers. At the Vitim deposits, the zones of uranium removal from the Vitimkan Complex granite by surface water and groundwater and the zones of uranium concentration under the action of syngenetic and epigenetic reducers in the alluvium–proluvium deposits in paleovallyes are very closely spaced at tens and hundreds of meters to a few kilometers. Some other differences include the mostly phosphate rather than oxide and silica composition of uranium minerals and the near-modern age of ore—1.5–12.5 million years. The breakthrough mining technologies are proposed, such as: nonregular accessing of ore bodies with the nonuniform distribution of uranium; use of sodium nitrite as a uranium oxidizer; groundwater resources management in mining of weakly watered deposits; direct determination of uranium content of ore using the method of neutron–neutron logging. These technologies enhance efficiency of ISL. The further research aimed to improve the process designs is proposed to be focused on optimization of ISL borehole patterns as well as on improvement of groundwater resources management in mining weakly watered deposits.

Ключевые слова Uranium deposit, geology, mineralogy, geochemistry, hydrogeology, geocryology, in-situ leaching, technology
Библиографический список

1. Shmariovich E. M. Typification of infiltration blanket uranium deposits by the nature of artesian basins. Sovetskaya geologiya. 1986. No. 8. pp. 31–38.
2. Boyl D. R. Geology and facial conditions of formation of basal type deposits in sedimentaries. Head-Notes of the 27 International Geological Congress Papers. Moscow : Nauka, 1984. Vol. IХ, Iss. 1. 336 p.
3. Uranium 2018: Resources, Production and Demand: A Joint Report by the NEA and IAEA. Paris : OECD Publishing, 2019. 460 p.
4. Karimov Kh. K., Bobonorov N. S., Tolstov E. A. et al. Uchkuduk type of uranium deposits in the Republic of Uzbekistan. Tashkent : Fan, 1996. 340 p.
5. Aubikarov Kh. B., Vreshkov A. F., Lukhtin V. F., Petrov N. N., Plekhanov V. N. et al. Uranium deposits of Kazakhstan (exogenous). Almaty : Gylym, 1995. 264 p.
6. Wülser P.-A., Brugger J., Foden H. R., Pfeifer H.-R. The Sandstone-Hosted Beverley Uranium Deposit, Lake Frome Basin, South Australia: Mineralogy, Geochemistry, and a Time-Constrained Model for Its Genesis. Economic Geology. 2011. Vol. 106, No. 5. pp. 835–867.
7. McKay A. D., Miezitis Y. Australia,s Uranium Resources, Geology and Development of Deposits. Mineral Resource Report 1. Canberra : AGSO Geoscience Australia, 2001. 103 р.
8. Luchinin I. I., Peshkov P. A., Dementev P. K. et al. Uranium deposits in paleovalleys in the TransUrals and Transbaikalia. Razvedka i okhrana nedr. 1992. No. 5. pp. 12–15.
9. Kochkin B. T., Tarasov N. N., Andreeva O. V., Asadulin E. E., Golubev V. N. Polygenetic and Polychronic Uranium Mineralization at Deposits of the Khiagda Ore Field, Buryatia. Geology of Ore Deposits. 2017. Vol. 59, No. 2. pp. 141–155.
10. Doynikova O. A., Tarasov N. N., Kartashov P. M. Uranium mineralization of vitim paleovalleys deposits. Razvedka i okhrana nedr. 2018. No. 12. pp. 24–30.
11. Golubev V. N., Tarasov N. N., Chernyshev I. V., Chugaev A.V., Ochirova G. V. et al. Post-Ore Processes of Uranium Migration in the Sandstone-Hosted Type Deposits: 234U/238U, 238U/235U and U–Pb Systematics of Ores of the Namaru Deposit, Vitim District, Northern Transbaikalia. Geology of Ore Deposits. 2021. Vol. 63, No. 4. pp. 287–299.

12. Golubev V., Chernyshev I., Kochkin B. et al. Uranium isotope variations (234U/238U and 238U/235U) and behavior of U-Pb isotope system in the Vershinnoye sandstone-type uranium deposit, Vitim uranium ore district, Russia. Journal of Earth Science. 2020. Vol. 31, No. 2. pp. 11–29.
13. Brown S., Basu A., Depaolo D. A Uranium Isotopic Perspective on the Formation of Roll-Front Mineral Deposits and Implications for Post Mining Remediation. International Symposium on Uranium Raw Material for the Nuclear Fuel Cycle: Exploration, Mining, Production, Supply and Demand, Economics and Environmental Issues : Book of Abstracts and Extended Abstracts. Vienna, 2018. pp. 57–60.
14. Vinokurov S. F., Strelkova E. A. Formation Conditions of Paleovalley Uranium Deposits Hosted in Upper Eocene–Lower Oligocene Rocks of Bulgaria. Geology of Ore Deposits. 2016. Vol. 58, No. 2. pp. 149–165.
15. Muto T. The precipitation environment of ningyoite. Mineralogical Journal. 1962. Vol. 3, No. 5-6. pp. 306–337.
16. Boyle D. R., Littlejohn A. L., Roberts A. C., Watson D. M. Ningyoite in uranium deposits of South Central British-Columbia: first North American occurrence. Canadian Mineralogist. 1981. Vol. 19, No. 4. pp. 325–331.
17. Kajitani K. A Geochemical Study on the Genesis of Ningyoite the Special Calcium Uranous Phosphate Mineral. Economic Geology. 1970. Vol. 65, Iss. 4. pp. 470–480.
18. Solodov I. ISR mining of uranium in the permafrost zone, Khiagda Mine (Russian Federation). International Symposium on Uranium Raw Material for the Nuclear Fuel Cycle: Exploration, Mining, Production, Supply and Demand, Economics and Environmental Issues. Vienna : International Atomic Energy Agency, 2014. p. 36.
19. Garrels R. M., Christ Ch. L. Solutions, Minerals and Equilibria. New York : Harper & Row, 1965. 450 p.
20. Dementev A. A., Gontar E. I., Rychkov V. N. et al. Leaching uranium from ores. Patent RF, No. 2572910. Applied: 03.12.2013. Published: 20.01.2016. Bulletin No. 2.
21. Ivanov A. G., Solodov I. N. Selection of casing material for in-situ leach wells. Gornyi Zhurnal. 2018. No. 7. pp. 81–85. DOI: 10.17580/gzh.2018.07.16
22. Arsentev Yu. A., Nazarov A. P., Zabaykin Yu. V., Ivanov A. G. Design of production strings made of polymeric materials for the conditions of permafrost rock mass. Aktualnye problemy i perspektivy razvitiya ekonomiki: rossiyskiy i zarubezhnyi opyt. 2019. No. 21. pp. 27–32.
23. Seredkin M. Information Systems for ISR Mines. ALTA 2020: Uranium Ore Processing. Perth : ALTA Metallurgical Services, 2020.
24. Hiam-Galvez D., Gerber E., Perkrul J. In situ recovery (ISR)–The permitting challenge. ALTA 2020: Uranium Ore Processing. Perth : ALTA Metallurgical Services, 2020.
25. Volkova M. K., Vasilevskiy P. Yu., Kortunov E. V., Samartsev V. N., Lekhov V. A. et al. Porous-flow model to support in-situ uranium leaching at Khiagda deposit. Underground Hydrosphere : All-Russian Conference on Groundwater of Eastern Russia with Foreign participation (XXIII Conference on Groundwater of Siberia and Russia’s Far East). Irkutsk : Institut zemnoy kory SO RAN, 2021. pp. 454–457.
26. Volkova M. K., Khudayarova A. B., Vasilevskiy P. Yu. et al. Method for managing groundwater resources for uranium mining by underground leaching from poorly watered ore deposits. Patent RF, No. 2765417. Applied: 28.06.2021. Published: 31.01.2022. Bulletin No. 4.
27. Noskov M., Solodov I., Kesler A., Terovskaya T. Groundwater contamination and self-purification at uranium production by the in-situ leaching process. Proceedings of the International Symposium on Uranium Raw Material for the Nuclear Fuel Cycle: Exploration, Mining, Production, Supply and Demand, Economics and Environmental Issues (URAM 2018). Vienna : International Atomic Energy Agency, 2018. pp. 307–310.

Language of full-text русский
Полный текст статьи Получить