Журналы →  Gornyi Zhurnal →  2022 →  №6 →  Назад

PRODUCTION SYSTEM
Название Modeling quality of concentration factory feedstock in ferruginous quartzite mining at the Lebedinskoe deposit
DOI 10.17580/gzh.2022.06.02
Автор Gorbatenko V. D., Cheskidov V. V., Yakubov M. M.
Информация об авторе

Lebedinsky GOK, Gubkin, Russia:

V. D. Gorbatenko, Chief Geologist, gorbatenko_v_d@lebgok.ru

 

College of Mining, NUST MISIS, Moscow, Russia:
V. V. Cheskidov, Deputy Director, Associate Professor, Candidate of Engineering Sciences
M. M. Yakubov, Assistant

Реферат

Statistical modeling of daily average or mean-shift content of useful component in ore hauled from a certain production face to a rehandling point, to an intermediate (including blending) storage, or to a concentration factory enables mine planning to proceed to the next level. This also allows meeting one of the major tasks of the modern mining industry, namely, stabilization of the useful component content in processing feedstock. The geological information quality and initial interpretation are the major factors of data reliability in modeling any mineral mining, production or processing chain. Currently, almost all mining companies in Russia have introduced operational exploration procedures. The analysis of the long-term operational exploration data collectively with the geological exploration data allows determining patterns of useful component in different areas and sites of a mineral deposit. The present research made it possible to obtain magnetite content variation per levels of the test deposit and to reveal correlations between different quality characteristics. Using the statistics on magnetite distribution in the ferruginous quartzite ore body of the Lebedinskoe deposit, as well as with regard to the current capacities of production faces, the simulation model has been constructed in the framework of this research. The model enables prediction of the daily mean content of the useful component in the mineral feedstock of the concentration factory at different number of sampling points and at the varied daily average production capacity.

Ключевые слова Lebedinskoe deposit, mineral raw material, iron ore, ore flow, quality control, modeling, useful component content, quality variables
Библиографический список

1. Sinha S. K., Choudhary B. S. Pit Optimization for Improved NPV and Life of Mine in Heterogeneous Iron Ore Deposit. Journal of The Institution of Engineers (India): Series D. 2020. Vol. 101, Iss. 2. pp. 253–264.
2. Yushina T. I., Chanturia E. L., Dumov A. M., Myaskov A. V. Modern trends of technological advancement in iron ore processing. Gornyi Zhurnal. 2021. No. 11. pp. 75–83. DOI: 10.17580/gzh.2021.11.10
3. Hustrulid W., Kutcha M., Martin R. Open pit mine planning and design. 3rd ed. Boca Raton : CRC Press, 2013. Vol. 1. Fundamentals. 1308 p.
4. Yushina T. I., Petrov I. M., Avdeev G. I., Valavin V. S. Analysis of state-of-the-art in iron ore mining and processing in Russian Federation. Gornyi Zhurnal. 2015. No. 1. pp. 41–47. DOI: 10.17580/gzh.2015.01.08
5. Singh R. K., Sarkar B. C., Ray D. Geostatistical Modelling of a High-grade Iron Ore Deposit. Journal of the Geological Society of India. 2021. Vol. 97, Iss. 9. pp. 1005–1012.
6. Cheskidov V. V., Barabanov N. N., Lozhkin M. O., Smirnov P. A., Lagutina A. A. Distribution of iron and sulfur compounds: a case study of hydraulic waste fills. GIAB. 2021. No. 3. pp. 142–153.
7. Gzogyan T. N., Gzogyan S. R., Grishkina E. V. Rich iron ore in the Belgorod Region of the Kursk Magnetic Anomaly as potential resource for metallization. Eurasian Mining. 2019. No. 1. pp. 3–7. DOI: 10.17580/em.2019.01.01
8. Kainazarov A. S., Akpanbetova A. Zh., Kainazarova A. S., Demin V. F. Ore quality stabilization in underground mining at the Zhezkazgan deposit. Ustoichivoe razvitie gornykh teritorii. 2018. Vol. 10, No. 2(36). pp. 281–288.
9. Royer J. J., Mejia P., Caumon G., Collon P. 3D and 4D Geomodelling Applied to Mineral Resources Exploration—An Introduction. 3D, 4D and Predictive Modelling of Major Mineral Belts in Europe. Cham : Springer, 2015. pp. 73–89.
10. Renguang Zuo, Carranza J. Geoinformatics in Applied Geochemistry. Journal of Geochemical Exploration. 2016. Vol. 164. pp. 1–2.
11. Ghaziani H. H., Monjezi M., Mousavi A., Dehghani H., Bakhtavar E. Design of Loading and Transportation Fleet in Open-Pit Mines using Simulation Approach and Metaheuristic Algorithms. Journal of Mining and Environment. 2021. Vol. 12, No. 4. pp. 1177–1188.
12. Ellefmo S. L., Aasly K., Lang A., Vezhapparambu V. S., Silva C. A. M. Geometallurgical Concepts Used in Industrial Mineral Production. Economic Geology. 2019. Vol. 114, No. 8. pp. 1543–1554.
13. Kornilkov S. V., Alenichev V. M., Laptev Yu. V., Yakovlev A. M. Product quality prediction based on geoinformation technologies. Gornyi Zhurnal. 2017. No. 12. pp. 10–15. DOI: 10.17580/gzh.2017.12.02
14. Maleki M., Jélvez E., Emery X., Morales N. Stochastic Open-Pit Mine Production Scheduling: A Case Study of an Iron Deposit. Minerals. 2020. Vol. 10, Iss. 7. 585. DOI: 10.3390/min10070585

Language of full-text русский
Полный текст статьи Получить
Назад