Journals →  Non-ferrous Metals →  2022 →  #1 →  Back

MATERIALS SCIENCE
ArticleName Influence of titanium on structure formation, liquation processes and microhardness of structural components of Al – Ni – Ti alloys synthesized from the oxide phases by SHS metallurgy
DOI 10.17580/nfm.2022.01.06
ArticleAuthor Ri E. H., Ri Hosen, Doroshenko K. V., Kim E. D.
ArticleAuthorData

Federal State Budgetary Educational Institution of Higher Education “Pacific National University”, Khabarovsk, Russia:

E. H. Ri, Dr. Eng., Prof., Head of the Department of Foundry Engineering and Metal Technology, e-mail: erikri999@mail.ru
Hosen Ri, Dr. Eng., Prof., e-mail: opirus@bk.ru
K. V. Doroshenko, Post-graduate Student of the Department of Foundry and Metal Technology, e-mail: rbhbkk1212@yandex.ru
E. V. Kim, Senior Lecturer of the Department of Foundry Engineering and Metal Technology, e-mail: jenya_1992g@mail.ru

Abstract

The paper is devoted to revealing the regularities of the influence of titanium (0.91, 2.42, 3.19, 3.39, 4.32 and 8.81 wt.%) on structure formation, nature of element distribution and microhardness of structural components in Al – Ni – Ti alloys by aluminothermy during SHS metallurgy. As the initial composition of the charge were selected the following materials in fractional parts: Al:NiO2:CaF2:NaNO3:TiO2 = 10:10:12:6:X, where X = 1.5, 4.5, 5.0, 7.0, 10.0. The structural components in Al – Ni – Ti alloys have been identified by electron microscopy and X-ray spectral analysis of elements. In the alloys with 0.91–4.32 wt.% Ti the following phases crystallize: β'-phase (solid solution of Ni in the nickel aluminide AlNi) Al3Ni2, Al3Ti, Al3Ni and α-solid solution of Ni and Ti in aluminum. In an alloy with 8.81 wt.% Ti the β'-phase turns into a titanium-doped nickel aluminide Al(NiTi) (composition in at.%: 50.53 Al; 1.47 Ti; 48.0 Ni). The increase of titanium content in Al – Ni – Ti alloys increases the solubility of Ni in the β'-phase and at titanium concentration in the alloy 8.81 wt.% in the aluminide Al(NiTi) up to 48 at.% Ni is dissolved compared to the solubility of nickel (38 at.%) in the alloy with 0.91 wt.% Ti. Increasing the nickel content in the above phases contributes to their microhardness from 13 GPa to 14.8 GPa at 8.81 wt.% Ti. Increasing the titanium content in Al – Ni – Ti alloys to 4.32 wt.% increases the solubility of nickel in the nickel aluminide Al3Ni, with a higher concentration of titanium (8.81 wt.%) in the nickel aluminide with titanium Al(NiTi) dissolves up to 48.53 at.% Ni, while in the alloy with 0.91 wt.% Ti – only about 1.0 at.% Ni. At the same time, the Al and Ti content in titanium aluminide Al3Ti decreases and its microhardness increases. It was not possible to determine the microhardness of Al(NiTi) aluminide because of the formation of a porous structure. In nickel aluminide Al3Ni, an increase in titanium content leads to an increase in nickel concentration to 4.32 wt.% Ti followed by a slight increase to 8.81 wt.% Ti. Despite increasing the nickel content and decreasing the aluminum concentration, the microhardness of the nickel aluminide decreases. Apparently, this circumstance is caused by the formation of a porous structure in this phase.

The research was carried out at the Center for Collective Use “Applied Materials Science” of the Federal State Budgetary Educational Institution of Higher Education “TOGU” with the financial support of the Ministry of Science and Education of the Russian Federation within the framework of research work No state reg. of the state task AAAA-A20-120021490002-1.

keywords Alloy, microhardness, concentration, aluminides, solubility, liquation, solid solution
References

1. Reed R. C. The Superalloys: Fundamentals and Applications. 1st ed. Cambridge: Cambridge University Press, 2006. xv+372 p.
2. Pollock T. M., Tin S. Nickel-Based Superalloys for Advanced Turbine Engines: Chemistry, Microstructure and Properties. Journal of Propulsion and Power. 2006. Vol. 22, Iss. 2. pp. 361–374.
3. Ma D. Novel Casting Processes for Single-Crystal Turbine Blades of Superalloys. Frontiers of Mechanical Engineering. 2018. Vol. 13, Iss. 1. pp. 3–16.
4. Wang F., Ma D., Zhang J., Liu L., Bogner S., Bührig-Polaczek A. Effect of Local Cooling Rates on the Microstructures of Single Crystal CMSX-6 Superalloy: a Comparative Assessment of the Bridgman and the Downward Directional Solidification Processes. Journal of Alloys and Compounds. 2014. Vol. 616. pp. 102–109.
5. Elliott A. J., Pollock T. M., Tin S., King W. T., Huang S.-C., Gigliotti M. F. X. Directional Solidification of Large Superalloy Castings with Radiation and Liquid-Metal Cooling: a Comparative Assessment. Metallurgical and Materials Transactions A. 2004. Vol. 35, Iss. 10. pp. 3221–3231.
6. Qi H., Azer M., Ritter A. Studies of Standard Heat Treatment Effects on Microstructure and Mechanical Properties of Laser Net Shape Manufactured Inconel 718. Metallurgical and Materials Transactions A. 2009. Vol. 40, Iss. 10. pp. 2410–2422.
7. Harrison N. J., Todd I., Mumtaz K. Reduction of Micro-Cracking in Nickel Superalloys Processed by Selective Laser Melting: a Fundamental Alloy Design Approach. Acta Materialia. 2015. Vol. 94. pp. 59–68.
8. Bi G., Sun C.-N., Chen H.-C., Ng F. N., Ma C. C. K. Microstructure and Tensile Properties of Superalloy IN100 Fabricated by Micro-Laser Aided Additive Manufacturing. Materials & Design. 2014. Vol. 60. pp. 401–408.
9. Ng D. S., Chung D.-W., Toinin J. P., Seidman D. N., Dunand D. C., Lass E. A. Effect of Cr Additions on a γ - γ' Microstructure and Creep Behavior of a Co-based Superalloy with Low W Content. Materials Science and Engineering: A. 2020. Vol. 778. 139108. DOI: 10.1016/j.msea.2020.139108

10. Tu Y., Mao Z., Seidman D. N. Phase-Partitioning and Site-Substitution Patterns of Molybdenum in a Model Ni – Al – Mo Superalloy: an Atom-Probe Tomographic and First-Principles Study. Applied Physics Letters. 2012. Vol. 101, Iss. 12. 121910. DOI: 10.1063/1.4753929
11. Fährmann M., Fratzl P., Paris O., Fährmann E., Johnson W. C. Influence of Coherency Stress on Microstructural Evolution in Model Ni–Al–Mo Alloys. Acta metallurgica et Materialia. 1995. Vol. 43, Iss. 3. pp. 1007–1022.
12. Tian S., Zeng Z., Fushun L., Zhang C., Liu C. Creep Behavior of a 4.5%-Re Single Crystal Nickel-Based Superalloy at Intermediate Temperatures. Materials Science and Engineering: A. 2012. Vol. 543. pp. 104–109.
13. Wöllmer S., Mack T., Glatzel U. Influence of Tungsten and Rhenium Concentration on Creep Properties of a Second Generation Superalloy. Materials Science and Engineering: A. 2001. Vol. 319. pp. 792–795.
14. Sudbrack C. K., Isheim D., Noebe R. D., Jacobson N. S., Seidman D. N. The Influence of Tungsten on the Chemical Composition of a Temporally Evolving Nanostructure of a Model Ni – Al – Cr Superalloy. Microscopy and Microanalysis. 2004. Vol. 10, No. 3. pp. 355–365.
15. Wang T., Sheng G., Liu Z.-K., Chen L.-Q. Coarsening Kinetics of γPrecipitates in the Ni–Al–Mo System. Acta Materialia. 2008. Vol. 56, Iss. 19. pp. 5544–5551.
16. van Sluytman J. S., Pollock T. M. Optimal Precipitate Shapes in Nickel-Base γγAlloys. Acta Materialia. 2012. Vol. 60, Iss. 4. pp. 1771–1783.
17. Eris R., Akdeniz M. V., Mekhrabov A. O. Atomic Size Effect of Alloying Elements on the Formation, Evolution and Strengthening of γ'-Ni3Al Precipitates in Ni-Based Superalloys. Intermetallics. 2019. Vol. 109. pp. 37–47.
18. Hisazawa H., Terada Y., Takeyama M. Morphology Evolution of γ' Precipitates During Isothermal Exposure in Wrought Ni-Based Superalloy Inconel X-750. Materials Transactions. 2017. Vol. 58, Iss. 5. pp. 817–824.
19. Bocchini P. J., Sudbrack C. K., Noebe R. D., Seidman D. N. Temporal Evolution of a Model Co–Al–W Superalloy Aged at 650° C and 750° C. Acta Materialia. 2018. Vol. 159. pp. 197–208.
20. Long H., Mao S., Liu Y., Zhang Z., Han X. Microstructural and Compositional Design of Ni-Based Single Crystalline Superalloys — A review. Journal of Alloys and Compounds. 2018. Vol. 743. pp. 203–220.
21. Van Sluytman J. S., Moceri C. J., Pollock T. M. A Pt-Modified Ni-Base Superalloy with High Temperature Precipitate Stability. Materials Science and Engineering: A. 2015. Vol. 639. pp. 747–754.
22. Eris R., Akdeniz M. V., Mekhrabov A. O. The Site Preferences of Transition Elements and Their Synergistic Effects on the Bonding Strengthening and Structural Stability of γ'-Ni3Al Precipitates in Ni-Based Superalloys: a First-Principles Investigation. Metallurgical and Materials Transactions A. 2021. Vol. 52, Iss. 6. pp. 2298–2313.
23. Choudhury I. A., El-Baradie M. A. Machinability of Nickel-Base Super Alloys: a General Review. Journal of Materials Processing Technology. 1998. Vol. 77, Iss. 1–3. pp. 278–284.
24. Loria E. A. Recent developments in the progress of superalloy 718. JOM. 1992. Vol. 44, Iss. 6. pp. 33–36.
25. Meetham G. W. High-temperature materials — a general review. Journal of Materials Science. 1991. Vol. 26, Iss. 4. pp. 853–860.
26. Njah N., Dimitrov O. Microstructural evolution of nickelrich Ni–Al–Ti alloys during aging treatments: the effect of composition. Acta Metallurgica. 1989. Vol. 37, Iss. 9. pp. 2559–2566.
27. Prusov E. S., Panfilov A. A., Kechin V. A. Role of powder precursors in production of composite alloys using liquid-phase methods. Russian Journal of Non-Ferrous Metals. 2017. Vol. 58, Iss. 3. pp. 308–316.
28. Sanin V., Andreev D., Ikornikov D., Yukhvid V. Cast Intermetallic Alloys by SHS Under High Gravity. Acta Physica Polonica: A. 2011. Vol. 120, Iss. 2. pp. 331–335.
29. Amosov A. P., Lutz A. R., Latukhin E. I., Eroshkin A. A. Application of SHS Processes for The Production of in Situ Aluminum Matrix Composites Discretely Reinforced with Nanosized Titanium Carbide Particles. Review. Izvestiya Vuzov. Tsvetnaya Metallurgiya. 2016. No. 1. pp. 39–49.
30. Tiwary C., Gunjal V., Banerjee D., Chattopadhyay K. Intermetallic Eutectic Alloys in the Ni – Al – Zr System with Attractive High Temperature Properties. MATEC Web of Conferences. 2014. Vol. 14. 01005. DOI: 10.1051/matecconf/20141401005
31. Fukumoto M., Yokota T., Hara M. Formation of Ni Aluminide Containing Zr by Synchronous Electrodeposition of Al and Zr and Cyclic-Oxidation Resistance. Journal of the Japan Institute of Metals. 2010. Vol. 74, Iss. 9. pp. 584–591.
32. Wang L., Yao Ch., Shen J., Zhang Yu. Microstructures and Compressive Properties of NiAl – Cr (Mo) and NiAl – Cr Eutectic Alloys with Different Fe Contents. Materials Science and Engineering: A. 2019. Vol. 744. pp. 593–603.
33. Levashov E. A. Promising Materials and Technologies of Self-Propagating High-Temperature Synthesis. Moscow : Izdatelskiy dom “MISiS”, 2011. 378 p.
34. Parsa M. R., Soltanieh M. On the Formation of Al3Ni2 Intermetallic Compound by Aluminothermic Reduction of Nickel Oxide. Materials Сharacterization. 2011. Vol. 62, Iss. 7. pp. 691–696.
35. Khimukhin S. N., Kim E. D., Ri E. H. Synthesis of NiAl Composite Alloys by Metallothermy Method. Materials Today: Proceedings. 2019. Vol. 19. pp. 2278–2282.
36. Gostishchev V., Ri E., Ri H., Kim E., Ermakov M., Khimukhin S., Deev V., Prusov E. Synthesis of Complex-Alloyed Nickel Aluminides from Oxide Compounds by Aluminothermic Method. Metals. 2018. Vol. 8, Iss. 6. p. 439.
37. Ri Hosen, Gostishchev V. V., Ri E. H., Khimukhin S. N., Kim E. D., Medneva A. V. Development of the Synthesis Technology of Doped Nickel Aluminides From Oxide Compoumds by Aluminothermic Method. Metallurgia Mashinostroyeniya. 2018. No. 1. pp. 30–35.
38. Bazhin V. Y., Kosov Y. I., Lobacheva O. L., Dzhevaga N. V. Synthesis of Aluminum-Based Scandium–Yttrium Master Alloys. Russian Metallurgy (Metally). 2015. Vol. 2015, Iss. 7. pp. 516–520.
39. Khimukhin S. N., Kim E. D., Ri E. H. Synthesis of NiAl Composite Alloys by Metallothermy Method. Materials Today: Proceedings. 2019. Vol. 19. pp. 2278–2282.

Full content Influence of titanium on structure formation, liquation processes and microhardness of structural components of Al – Ni – Ti alloys synthesized from the oxide phases by SHS metallurgy
Back