Журналы →  Цветные металлы →  2022 →  №7 →  Назад

Металлообработка
Название Особенности технологии лазерной маркировки изделий из цветных металлов и сплавов с использованием матричных ультраплотных штрихкодов
DOI 10.17580/tsm.2022.07.11
Автор Петкова А. П., Ганзуленко О. Ю.
Информация об авторе

Санкт-Петербургский горный университет, кафедра материаловедения и технологии художественных изделий, Санкт-Петербург, Россия:

А. П. Петкова, профессор, докт. техн. наук, эл. почта: petkova_AP@pers.spmi.ru
О. Ю. Ганзуленко, доцент кафедры, канд. техн. наук, эл. почта: ganzulenko_OYu@pers.spmi.ru

Реферат

Приведены результаты исследований лазерного импульсного воздействия на поверхность металлических сплавов на медной, алюминиевой и титановой основах в процессе их маркировки с помощью лазерной обработки. Проведены исследования, направленные на разработку технологии нанесения на поверхность сплавов цветных металлов кодов с высокой плотностью записи информации для сохранения больших объемов данных об изделиях и их защиты от подделок. Обоснована уникальность нанобаркода и приведены его преимущества в качестве маркировочного символа по сравнению со знаками широко распространенной стандартной символики. Цветовые характеристики маркировочных символов определены параметрами оксидных пленок, формируемых в результате модифицирования поверхности сплавов под воздействием импульсного лазера, — толщиной оксидной пленки и ее фазовым и химическим составами, которые оказывают влияние на химический состав сплава и темпе ратурно-временные режимы лазерного маркировочного комплекса при обработке поверхности металлов. Для качественной маркировки подобраны наиболее контрастные оттенки получаемых маркировочных символов, представлены палитры таких цветов, полученные на исследуемых материалах. Также приведены результаты оптической и электронной микроскопии оксидных пленок сформированных маркировочных символов, демонстрирующих бороздчатую структуру с кратерами, возникающими в результате оплавления и испарения поверхности металла в процессе лазерной обработки. Представлен анализ качества нанесенных нанобаркодов с учетом их корректной считываемости и дешифровки закодированной информации посредством специального программного обеспечения.

Ключевые слова Лазерная обработка, модифицирование поверхности, маркировка, лазерное излучение, окисление, штрихкод, нанобаркод, оксидные пленки, защита продукции от контрафакта
Библиографический список

1. Carroll O., Tanguy Y., Houlihan J., Huyet G. Dynamics of a self-pulsing laser with delay, Proceedings of SPIE. The International Society for Optical Engineering. 2004. Vol. 77. pp. 628–635.
2. Valiulin A., Gorniy S., Grechko Yu., Patrov M., Yudin K. et al. Laser material marking. Photonics. 2007. No. 3. pp. 16–22.
3. Odintsova G., Andreeva Y., Salminen A., Roozbahani H., Van Cuong L. et al. Investigation of production related impact on the optical properties of color laser marking. Journal of Materials Processing Technology. 2019. Vol. 274. p. 116263. DOI: 10.1016/j.jmatprotec.2019.116263.
4. Gornyi S., Veyko V., Odintsova G., Loginov A., Karlagina Yu. et al. Colour laser marking of metal surface. PHOTONICS RUSSIA. 2013. Vol. 42, No. 6. pp. 34–45.
5. Veyko V. P., Gornyi S. G., Odintsova G. V., Patrov M. I., Yudin K. V. Multicoloured image formed on metal surface during its laser oxidation. Journal of Instrument Engineering. 2011. Vol. 54, No. 2. pp. 47–52.
6. Chirkova O. S., Konchus D. A., Sivenkov A. V. Effect of laser marking on the surface properties of 08Kh18N10 steel. Metalloobrabotka. 2018. No. 4. pp. 21–27.
7. Sivenkov A. V., Konovalov K. I., Zverkova E. I. Effect of laser marking on the changing structure and properties of austenitic steel. International Scientific Review. 2016. Vol. 11, No. 21. pp. 38–40.
8. Naumova M. G., Morozova I. G., Zarapin A. Yu., Borisov P. V. Copper alloy marking by altering its surface topology using laser heat treatment. Metallurg. 2018. Vol. 35. pp. 56–60.
9. Sivenkov A. V., Konchus D. A., Chirkova O. S., Pryakhin E. I. Assessment of laser marking contrast with profilometer. IOP Conference Series: Earth and Environmental Science. 2018. Vol. 194. p. 042022.
10. Pryakhin E. I. Nanobar code as multi-purpose two-dimensional notations with new features. Journal of Mining Institute. 2015. Vol. 215. pp. 97–100.
11. Ganzulenko O. Y., Petkova A. P. Testing a nano-barcodes marking technology for identification and protection of the mechanical products. Journal of Physics: Conference Series. 2020. Vol. 158. p. 012032. DOI: 10.1088/1742-6596/1582/1/012032.
12. Pryakhin E. I., Larionova E. V., Zakharenko E. A. Creating and approbation of the hardware and software complex for information fields application on the surface of products. Journal of Mining Institute. 2014. Vol. 209. pp. 234–238.
13. Ganzulenko O. Y., Petkova A. P. Simulation and approbation of the marking laser process on metal materials. Journal of Physics: Conference Series. 2021. Vol. 1753(1). p. 012016. DOI: 10.1088/1742-6596/1753/1/012016.
14. Rasskazchikov N. G., Polyakova A. A. Understanding the process of laser marking and its optimization. Mashinostroenie. 2019. Vol. 7, No. 1. pp. 9–13. DOI: 10.24892/RIJIE/20190102.
15. Odintsova G. V. Understanding and developing a process for colour laser marking of metals by local oxidation: Extended abstract of PhD dissertation. St Petersburg : Sankt-Peterburgskiy natsionalnyi issledovatelskiy universitet informatsionnykh tekhnologiy mekhaniki i optiki, 2014. 20 p.
16. Veiko V., Karlagina Y. Y., Moskvin M., Mikhailovskii V. Y., Odintsova G. et al. Metal surface coloration by oxide periodic structures formed with nanosecond laser pulses. Optics and Lasers in Engineering. 2017. Vol. 96. pp. 63–67.
17. Ageev E. I., Veiko V. P., Vlasova E. A., Karlagina Y. Y., Krivonosov A. S. et al. Controlled nanostructures formation on stainless steel by short laser pulses for products protection against falsification.Optics Express. 2018. Vol. 26, Iss. 2. pp. 2117–2122.
18. Ma Xiaolei, Nie Xihan, Zhao Jingnan, Shrotriy Pranav, Zhang Yan. Effect of nanosecond pulsed laser parameters on the color marking of 304 stainless steel. Optics and Laser Technology. 2020. Vol. 126. p. 106104. DOI: 10.1016/j.optlastec.2020.106104.
19. Antonov D. N., Burtsev A. A., Butkovskiy O. Ya. Metal surface coloration under the effect of pulsed laser radiation. Zhurnal tekhnicheskoy fiziki. 2014. Vol. 84, Iss. 10. pp. 83–86.
20. Gorbatyuk S. M., Morozova I. G., Naumova M. G. Colour markings formed on metal surface with the help of a high-concentration energy source. Metallurg. 2016. No. 6. pp. 91–94.
21. Konchus D. A., Sivenkov A. V., Pryakhin E. I. Structural variations on the surface of metallic products at laser marking. CIS Iron and Steel Review. 2021. No. 2. pp. 96–101. DOI: 10.17580/cisisr.2021.02.18.
22. Konchus D. A., Sivenkov A. V. The Formation of Contrasting Nanofilms on a Metal Surface for Bar Coding. Key Engineering Materials. 2020. No. 854. pp. 97–102. DOI: 10.4028/www.scientific.net/KEM.854.97.
23. Amiaga J. V., Gorny S. G., Vologzhanina S. А. Development of a fast method for forming Braille on the surface of steels with IR nanosecond pulsed 50W fiber laser. AIP Conference Proceedings. 2020. Vol. 2285.
24. Amiaga J. V., Gorny S. G., Vologzhanina S. А. Method of Convex Marking of the Surfaces of Steel Products Using a Pulsed 50-W Infrared Fiber Laser. Metally. 2020. No. 13. pp. 1513–1517.
25. Pryakhin E. I., Ligachev A. E., Kolobov Y. R., Zakharenko E. A., Romanov V. V. Assessment of the thermal effect on the surface of metal structural materials on the stability of laser-induced codes readability. Materials Science Forum. 2021. Vol. 1040. pp. 47–54.
26. Morozova I. G., Naumova M. G, Zarapin A. Y., Borisov P. V. Copper alloy marking by altering its surface topology using laser heat treatment. Metallurgist. 2018. Vol. 62. pp. 464–469.
27. Gorbatuk S. M., Naumova M. G. Morozova I. G. Color mark formation on a metal surface by a highly concentrated energy source. Metallurgist. 2016. Vol. 60, Iss. 5. pp. 646–650.
28. Platov Yu. M., Lazorenko V. M., Tovtin V. I., Kazilin E. E. Effect of laser radiation on the structure of Al – Mg – Zn alloy. Fizika i khimiya obrabotki materialov. 2014. No. 6. pp. 84–85.
29. Veiko V. P., Odintsova G. V., Gazizova M. Y., Karlagina Y. Y., Manokhin S. S. et al. The influence of laser micro- and nanostructuring on the wear resistance of Grade-2 titanium surface. Laser Physics. 2018. Vol. 28, No. 8. p. 086002.
30. Konchus D. A., Sivenkov A. V. A surface structure formation of stainless steel using a laser. Materials Science Forum. 2021. No. 1022. pp. 112–118.
31. Olt J., Maksarov V., Efimov A. Improving the quality of critical tractor parts through the dynamic stabilisation of the manufacturing process in regard to CNC machines. Agronomy Research. 2019. Vol. 17. pp. 1146–1154.
32. Alekseev V. I., Barakhtin B. К., Zhukov A. S. Chemical heterogeneity as a factor of improving the strength of steels manufactured by selective laser melting technology. Journal of Mining Institute. 2020. Vol. 242. pp. 191–196. DOI: 10.31897/pmi.2020.2.191.
33. Morozova I. G., Naumova M. G., Zarapin A. Yu., Borisov P. V. Copper alloy marking by altering its surface topology using laser heat treatment. Metallurg. 2018. No. 5. pp. 56–60.
34. Golosov E. V., Emelyanov V. I., Ionin A. A., Kolobov Yu. R., Kudryashov S. I., Ligachev A. E. et al. Modification of titanium surface by femtosecond pulse laser radiation. Fizika i khimiya obrabotki materialov. 2010. No. 2. pp. 10–15.
35. Chin-Lunchang, Chung-Wei Cheng, Jinn-Kuen Chen. Femtosecond laser-induced periodic surface structures of copper: Experimental and modeling comparison. Applied Surface Science. 2019. Vol. 469. pp. 904–910. DOI: 10.1016/j.apsusc.2018.11.059.

Language of full-text русский
Полный текст статьи Получить
Назад