Журналы →  Chernye Metally →  2022 →  №8 →  Назад

90 years of the Department of Materials Science and Composite Materials of Volgograd State Technical University
Название Investigation of the structure and properties of a fivelayer titanium-steel explosion-welded composite material after technological stages
DOI 10.17580/chm.2022.08.09
Автор L. M. Gurevich, V. N. Arisova, A. F. Trudov, V. O. Kharlamov
Информация об авторе

Volgograd State Technical University, Volgograd, Russia:

L. M. Gurevich, Dr. Eng., Associate Prof., Head of the Dept. of Materials Science and Composite Materials e-mail: mv@vstu.ru
V. N. Arisova, Cand. Eng., Associate Prof., Dept. of Materials Science and Composite Materials
A. F. Trudov, Cand. Eng., Associate Prof., Dept. of Materials Science and Composite Materials
V. O. Kharlamov, Cand. Eng., Associate Prof., Dept. of Equipment and Technology of Welding Production

Реферат

The paper presents the results of studies of a five-layer composite material consisting of three layers of titanium VT20 alloy and two layers of stainless 08Kh18N10T steel after explosion welding (EW) and subsequent processing, including hot rolling (HR) and heat treatment (HT) at temperatures of 800, 850 and 900 °C with a holding time of 1 to 100 h to form a layered intermetallic composite (LIC), which has a combination of plastic layers of the original alloys and intermetallic interlayers in contact with them, the presence of which provides the necessary strength characteristics at elevated temperatures. The structure, microhardness, and chemical composition of the diffusion zones of the composite were studied using optical and electron microscopy, X-ray spectral and X-ray diffraction analyses. It is shown that, after EW, the joint zones have a characteristic wavy profile with areas of melted and crystallized metal–flashes, which are solid solutions based on titanium, iron, and Cr(Fe)2Ti intermetallic compound. Hot rolling and HT under the specified conditions led to diffusion processes of main steel elements into the titanium alloy, resulting in the formation of diffusion interlayers adjacent to the steel and titanium alloy, the composition and thickness of which depend on temperature and holding time at certain ratios of chemical elements and phase composition.

Ключевые слова Layered titanium-steel intermetallic composite, explosion welding, rolling, heat treatment, diffusion, intermetallic compounds, microstructure, electron microscopy, energy dispersive analysis, X-ray diffraction analysis, chemical composition, phase composition, microhardness
Библиографический список

1. Trykov Yu. P., Gurevich L. М., Shmorgun V. G. Titanium and steal composites and compounds: monograph. Volgograd: Volgograd State Technical University, 2013. 344 p.
2. Gurevich L. М., Shmorgun V. G., Slautin О. V., Bogdanov А. I. Layered intermetallic composites and coatings. Moscow: Metallurgizdat, 2016. 346 p.
3. Varin R. A., Winnicka M. B. Plasticity of structural intermetallic compounds. Materials Science and Engineering: A. 1991. Vol. 137. pp. 93–103.
4. Sonti K. S., Dash B., Vamsi K. V., Bandyopadhyay H., Ravisankar B. et al. Deformation behavior of Al/Cu in-situ metal-intermetallic laminates at low and high strain rates. Journal of Alloys and Compounds. 2021. Vol. 873. pp. 159767.
5. Kvashenkina О. Е., Eydelman Е. D., Osipov V. S. et al. Estimation of the maximum transverse size of multilayer bimetallic films for self-propagating high-temperature synthesis using the Ni/Al structure as an example. Zhurnal tekhnicheskoy fiziki. 2020. Vol. 90. No. 7. pp. 1189–1194.
6. Wang H., Zhu C., Vecchio K. S. Deformation and fracture evolution of FeAl-based metallicintermetallic laminate (MIL) composites. Acta Materialia. 2020. Vol. 194. pp. 496–515.
7. Zhang J. Synthesis of γ-TiAl foils and sheets by innovative reactive diffusion methods from elemental Ti and Al. Intermetallics. 2010. Vol. 18. No. 12. pp. 2292–2300.
8. Rybin V. V., Semenov V. А., Semenov А. N. et al. Microstructure of the bimetallic compound titanium alloy – orthorhombic titanium aluminide (diffusion welding). Voprosy materialovedeniya. 2004. Vol. 38. No. 2. pp. 47–60.
9. Rybin V. V., Sidorov I. I., Grinberg B. А. et al. Microstructure of a bimetallic compound titanium – orthorhombic titanium aluminide (explosion welding). Voprosy materialovedeniya. 2004. Vol. 38. No. 2. pp. 61–71.
10. Trykov Yu. P., Gurevich L. М., Arisova V. N. Diffusion in layered composites: monograph. Volgograd: Volgograd State Technical University, 2006. 402 p.
11. Didyk R. P., Kozechko V. А. Forming multilayer constructions by explosion welding. Chernye Metally. 2016. No. 7. pp. 66–70.
12. Kuzmin S. V., Lysak V. I., Khaustov S. V. et al. On the basic principles of designing modes of explosion welding of metal layered composites. Izvestiya Volgogradskogo gosudarstvennogo tekhnicheskogo universiteta. 2006. No. 9. pp. 4–15.
13. Khaustov S. V., Lysak V. I., Kuzmin S. V. et al. Software for calculation of impact parameters in multilayer systems of metal plates. Izvestiya Volgogradskogo gosudarstvennogo tekhnicheskogo universiteta. 2017. No. 13. pp. 5–22.
14. Trykov Yu. P., Shmorgun V. G. Properties and performance of layered composites: monograph. Volgograd: Volgograd State Technical University, 1999. 190 p.
15. Kobelev А. G., Lysak V. I., Chernyshev V. N., Bykov А. А., Vostrikov V. P. Production of metal layered composite materials. Moscow: Intermet Inzhiniring, 2002. 496 p.
16. Kobelev А. G., Potapov I. N., Kuznetsov Е. V. Layered metal technology. Moscow: Metallurgiya, 1991. 247 p.
17. Gurevich L. М., Arisova V. N., Izyumskiy V. А. Simulation of the stress-strain state of an explosion-welded five-layer titanium-steel composite after hot rolling. Izvestiya Volgogradskogo gosudarstvennogo tekhnicheskogo universiteta. 2020. No. 6. pp. 62–67.
18. Mousavi A. A. A., Al-Hassani S. T. S. Numerical and experimental studies of the mechanism of the wavy interface formations in explosive/impact welding. Journal of the Mechanics and Physics of Solids. 2005. Vol. 53. pp. 2501–2528.
19. Carton E. Wave forming mechanisms in explosive welding. Materials Science Forum. 2004. Vol. 465–466. pp. 219–224.
20. Wachowski M. G., Slezak T., Płocinski T., Kurzydłowski K. J. The Effect of Heat Treatment on the Microstructure and Properties of Explosively Welded Titanium-Steel Plates. Journal of Materials Engineering and Performance. 2017. Vol. 26. pp. 945–954.
21. Mei Z., Yan Y. W., Cui K. Effect of matrix composition on the microstructure of in situ synthesized TiC particulate reinforced iron-based composites. Materials Letters. 2003. Vol. 57. pp. 3179.
22. Hai-Tao Jiang, Xiao-Qian Yan, Ji-Xiong Liu, Xiao-Ge Duan. Effect of heat treatment on microstructure and mechanical property of Ti−steel explosive-rolling clad plate. Transactions of Nonferrous Metals Society of China. 2014. Vol. 24. pp. 697–704.
23. GOST 19807–91. Wrought titanium and titanium alloys. Grades. Introduced: 01.07.1992. Moscow: Izdatelstvo standartov, 1991.
24. GOST 5632–2014. Stainless steels, corrosion resisting, heat-resisting and creep resisting alloys. Grades. Introduced: 01.01.2015. Moscow: Izdatelstvo standartov, 2014.
25. Lyakishev N. P. State diagrams of binary metal systems: reference book in 3 volumes. Vol. 2. Moscow: Mashinostroenie, 1997. 1024 p.

Language of full-text русский
Полный текст статьи Получить
Назад