Journals →  Цветные металлы →  2022 →  #9 →  Back

Автоматизация
ArticleName Оптический контроль качества брикетированной металлошихты
DOI 10.17580/tsm.2022.09.13
ArticleAuthor Кашин Д. А., Кульчицкий А. А.
ArticleAuthorData

Санкт-Петербургский горный университет, Санкт-Петербург, Россия:

Д. А. Кашин, аспирант кафедры автоматизации технологических процессов и производств, эл. почта: s185023@stud.spmi.ru
А. А. Кульчицкий, доцент кафедры автоматизации технологических процессов и производств, канд. техн. наук, эл. почта: doz-ku@rambler.ru

Abstract

Рассмотрена проблема контроля качества брикетированной металлургической шихты. Выполнен анализ существующих методов и систем оценки брикета на наличие засоряющих примесей и нарушений формы. На основе изученного было установлено, что на текущий момент осуществляется только выборочный контроль с разрушением, а автоматизированных устройств контроля не предложено. В связи с этим было исследовано применение объемно-весового метода для осуществления контроля качества брикетированных шихтовых материалов. Основное внимание уделено проблеме оценки геометрических параметров брикета и его поверхностных свойств по их цифровым изображениям при помощи камер технического зрения. Описано компоновочное решение для предлагаемой системы. Приведена методика оценки объема брикета с учетом смещения изображения в плоскости калибровки. Получены расчетные значения зависимости относительной погрешности измерения при ошибке позиционирования объекта с использованием методики компенсации и без нее. Рассмотрена методика косвенной оценки пористости брикета для дальнейшего определения его истинной плотности и содержания в нем засоряющих примесей. С применением программной библиотеки TensorFlow проведено обучение нейросети на изображениях объектов с разными характеристиками. Получена качественная оценка применения нейронных сетей для определения типа металла в брикете с точностью классификации материала до 94 %. Проведенный на базе экспериментального стенда анализ образцов показал возможность применения изложенной методики для осуществления автоматизированного контроля качества брикетов с точностью определения геометрических параметров не менее 0,4 % при использовании методов компенсации погрешности позиционирования объекта относительно калибровочной плоскости.

keywords Брикетированная металлошихта, техническое зрение, объемно-весовой метод, оптические системы пассивного типа, автоматизация, нейронные сети
References

1. Galevskiy G. V., Kulagin N. M., Mintsis M. Ya. Ecology and waste disposal in aluminium industry. Novosibirsk : Nauka, Sibirskoe predpriyatie RAN, 1996. 146 p.
2. Beloglazov I. I., Morenov V. A., Leusheva E. L. Flow modeling of high-viscosity fluids in pipeline infrastructure of oil and gas enterprises. Egyptian Journal of Petroleum. No. 11. pp. 1–9. DOI: 10.1016/j.ejpe.2021.11.001.
3. Bushuev A. B., Boikov V. I., Mansurova O. K., Bystrov S. V. et al. Synthesis of optimal information and energy schemes of measuring and converting devices. Mekhatronika, Avtomatizatsiya, Upravlenie. 2021. Vol. 22, Iss. 10. pp. 518–526.
4. Khalifa A. A., Bazhin V. Yu., Ustinova Ya. V., Shalabi M. E. Kh. Understanding the kinetics behind red mud pelletizing in hydrogen flow. Zapiski Gornogo instituta. 2022. Vol. 254. DOI: 10.31897/PMI.2022.18.
5. Ozhogin V. V. Briquetting of ground metallurgical raw material: Basic theory and process. Monograph. Mariupol : PGTU, 2010. 442 p.
6. GOST R 54565–2011. Scrap and waste of non-ferrous metals and alloys. Terms and definitions. Introduced: 01.01.2013.
7. Gonik I. L., Lsmyakin V. P., Novitskiy N. A. Application of briquetted ironbearing waste. Metallurg. 2011. No. 5. pp. 25–27.
8. Meyer H. J. Use of regenerative heating technologies at aluminium melting and aluminium recycling furnaces. Heat Processing. Essen. 2012. pp. 78–90.
9. Spencer D. B. The high-speed identification and sorting of nonferrous scrap. JOM. 2005. Vol. 57, Iss. 4. pp. 46–51.
10. Pugacheva N. B., Babaylov N. A., Bykova T. M., Loginov Yu. N. The structure, phase composition and micromechanical properties of briquetted aluminium. Obrabotka Metallov / Metal Working and Material Science. 2020. Vol. 22, No. 3. pp. 82–94. DOI: 10.17212/1994-6309-2020-22.3-82-94.
11. GOST 1639–2009. Non-ferrous metals and alloys scrap and waste. General specifications. Introduced: 01.01.2011.
12. Non-destructive testing and diagnostics: Reference book. Ed. by V. V. Klyuev. Moscow : Mashinostroenie, 2005. 679 p.
13. Kulchitskii А. А, Kashin D. A. The choice of a method for non-contact assessment of the composition of briquetted charge materials. Journal of Physics: Conference Series. 2019. No. 1399. pp. 1–6.
14. Ignatova A. M., Ignatov M. N. Contactless analysis of nickel foam porosity by 3D X-ray tomography. Izvestiya vuzov. Poroshkovaya metallurgiya i funktsionalnye pokrytiya. 2015. No. 3. pp. 36–43.
15. Fandeev V. P., Samokhina K. S. Porous structure study techniques. Internetzhurnal Naukovedenie. 2015. No. 4. p. 101.
16. E. A. Artemiev, A. A. Artemiev, E. V. Tsarenko. Method of continuous weighing of materials carried by belt conveyors, system to this end and belt conveyor roller support. Patent RF, No. 2401994C1. Published: 20.10.2010.
17. Jakubovicová L. et al. Technical solution of the modern conveyor system. IOP Conference Series: Materials Science and Engineering. 2021. Vol. 1199, No. 1. 012031.
18. Potapov A. I., Kulchitskii A. A., Smirnov A. G., Smorodinskii Y. G. Evaluating the error of a system for monitoring the geometry of anode posts in electrolytic cells with self-baking anode. Russian Journal of Nondestructive Testing. 2020. Vol. 56, Iss. 3. pp. 268–274.
19. Kashin D. A., Kulchitskiy A. A., Fedorova E. R. A computer programme for size and shape analysis of briquetted materials on the basis of their digital images. Certificate of State Registration of Computer Software No. 2020615959. State registration in the Computer Software Register. 5.06.2020.
20. Kashin D. A., Kulchitskiy A. A., Smirnov A. G. A computer programme for size control of axisymmetric parts that is capable of correcting perspective errors of a single-channel optical system. Certificate of State Registration of Computer Software No. 2020615959. State registration in the Computer Software Register. 25.10.2020.
21. Marrion C. C., Mullan N. J. Detecting object presence on a target surface. Patent US, No. 2016253793A1. Published: 01.09.2016.
22. Wang Zhou. Multi-face imaging measurement device. Patent CN, No. 102243185A. Published: 2011.11.16.
23. Wang Xue, Shan Bingzheng, Yang Kaige, Yang Huan. Screen appearance defect online detection device. Patent CN, No. 211528226U. Published: 2020.09.18.
24. Makhov V. E., Repin O. S., Potapov A. I. Dimensions measured by machine vision systems in coherent light. Kontrol. Diagnostika. 2014. No. 4. pp. 12–19. DOI: 10.14489/td.2014.04.pp.012-019.
25. Potapov A. I., Kulchitskiy A. A., Smorodinskii Ya. G., Smirnov A. G. Evaluating the error of a system for monitoring the geometry of anode posts in electrolytic cells with self-baking anode. Russian Journal of Nondestructive Testing. 2020. Vol. 56, Iss. 3. pp. 268–274.
26. Official website of Basler. https://www.baslerweb.com/ru/ (Accessed: 12.06.2022)
27. Gutorov M. M. Fundamentals of lighting engineering and light sources. Moscow, 1983.
28. Relf C. G. Image acquisition and processing with Lab VIEW. CRC Press LLC. 2004.
29. Schreder G., Treiber H. Optical engineering. Moscow : Tekhnosfera, 2006. 424 p.
30. Fedosov V. P., Nesterenko A. K. Digital processing of signals in LabVIEW: Learner’s guide. Ed. by V. P. Fedosov. Moscow : DMK Press, 2007. 456 p.
31. Beloglazov I. I., Sabinin D. S., Nikolaev M. Yu. Modeling the disintegration process for ball mills using dem. Mining Informational and Analytical Bulletin. 2022. No. 6-2. pp. 268–282. DOI: 10.25018/0236_1493_2022_62_0_268.
32. Boikov A., Payor V., Savelev R., Kolesnikov A. Synthetic data generation for steel defect detection and classification using deep learning. Symmetry. 2021. Vol. 13. p. 1176. DOI: 10.3390/sym13071176.
33. Vasilyeva N. V., Boikov A. V., Erokhina O. O., Trifonov A. Y. Automated digitization of radial charts. Journal of Mining Institute. 2021. Vol. 247. pp. 82–87. DOI: 10.31897/PMI.2021.1.9.
34. Vasilyeva N., Fedorova E., Kolesnikov A. Big data as a tool for building a predictive model of mill roll wear. Symmetry. 2021. Vol. 13. p. 859. DOI: 10.3390/sym13050859.
35. Vasilyeva N. V., Boikov A. V., Erokhina O. O. et al. Automated digitization of radial charts. Journal of Mining Institute. 2021. Vol. 247. pp. 82–87. DOI: 10.31897/PMI.2021.1.9.
36. Krizhevsky A., Sutskever I., Hinton G. E. ImageNet classification with deep convolutional neural networks. Communications of the ACM. Association for Computing Machinery. 2017. Vol. 60, No. 6. pp. 84–90. DOI: 10.1145/3065386.
37. Paszke A., Gross S., Massa F., Lerer A. et al. Pytorch: An imperative style, high-performance deep learning library. Advances in Neural Information Processing Systems. 2019. Vol. 32.

Language of full-text russian
Full content Buy
Back