Журналы →  Горный журнал →  2023 →  №1 →  Назад

ПРИКЛАДНЫЕ ИССЛЕДОВАНИЯ
Название Применение модифицированного метода Мэтьюза–Потвина при геотехническом обосновании параметров очистных камер с учетом эквивалентного линейного перебора сечения
DOI 10.17580/gzh.2023.01.15
Автор Марысюк В. П., Муштекенов Т. С., Трофимов А. В., Колганов А. В.
Информация об авторе

Заполярный филиал ПАО «ГМК «Норильский никель», Норильск, Россия:

Марысюк В. П., главный геотехник – директор Центра геодинамической безопасности, канд. техн. наук
Муштекенов Т. С., зам. директора по минерально-сырьевому комплексу

 

ООО «Институт Гипроникель», Санкт-Петербург, Россия:

Трофимов А. В., зав. лабораторией геотехники, канд. техн. наук, TrofimovAV@nornik.ru
Колганов А. В., научный сотрудник лаборатории геотехники

Реферат

Отмечено, что при отработке вкрапленных руд на месторождениях Талнахского рудного узла устойчивость очистных пространств во многом зависит от кинематических показателей и блочности массива. В рамках исследования предложен расчетный подход к обоснованию параметров конструктивных элементов очистных камер с применением метода оценки устойчивости по Мэтьюзу–Потвину и его модификаций. Выбор данного расчетного метода об условлен положительным опытом применения в мировой практике и совокупным комплексным учетом влияющих на устойчивость факторов – кинематической и прочностной устойчивости.

Ключевые слова Вкрапленные руды, система разработки, очистные камеры, устойчивость, расчет, метод Мэтьюза–Потвина
Библиографический список

1. Fedyanin A. S. Production and technical risk assessment and management strategy in the mining industry. Gornyi Zhurnal. 2022. No. 1. pp. 11–15. DOI: 10.17580/gzh.2022.01.02
2. Eremenko V. A., Aynbinder I. I., Patskevich P. G., Babkin E. A. Assessment of the state of rocks in underground mines at the Polar Division of Norilsk Nickel. GIAB. 2017. No. 1. pp. 5–17.
3. Read J., Stacey P. Guidelines for Open Pit Slope Design. Collingwood : CSIRO Publishing, 2009. 487 p.
4. Fedotov G. S., Sapronova N. P. Geological and mining information systems as a tool for digital transformation of production processes in mining companies. Marksheyderya i nedropolzovanie. 2021. No. 4(114). pp. 54–59.
5. Sabyanin G. V., Balandin V. V., Trofimov A. V., Kuzmin S. V. Geomechanical survey procedure for Oktyabrsky mine. Gornyi Zhurnal. 2020. No. 6. pp. 11–16. DOI: 10.17580/gzh.2020.06.01
6. Jian-yun Lin, Yu-jun Zuo, Jian Wang, Lu-jing Zheng, Bin Chen et al. Stability analysis of underground surrounding rock mass based on block theory. Journal of Central South University. 2020. Vol. 27, Iss. 10. pp. 3040–3052.
7. Li-Yun Yang, Chen-Xi Ding. Fracture mechanism due to blast-imposed loading under high static stress conditions. International Journal of Rock Mechanics and Mining Sciences. 2018. Vol. 107. pp. 150–158.
8. Rasskazov I. Yu., Saksin B. G., Potapchuk M. I., Anikin P. A. The researches of burst-hazard on mines in Russian Far East. Geomechanics and Geodynamics of Rock Masses : Proceedings of the 2018 European Rock Mechanics Symposium. Leiden : CRC Press/Balkema, 2018. Vol. 1. pp. 153–166.
9. Palmstrom A. Measurements of and correlations between block size and rock quality designation (RQD). Tunnelling and Underground Space Technology. 2005. Vol. 20, Iss. 4. pp. 362–377.
10. Mathews K. E., Hoek, E., Wyllie D. C., Stewart S. B. V. Prediction of stable excavation spans for mining at depths below 1,000 meters in hard rock. Golder Associates Report to Canada Centre for Mining and Energy Technology (CANMET), Department of Energy and Resources. Ottawa, 1980.
11. Barton N., Lien R., Lunde J. Engineering classification of r ock masses for the design of tunnel support. Rock mechanics. 1974. Vol. 6, Iss. 4. pp. 189–236.
12. Bieniawski Z. T. Classification of Rock Masses for Engineering: The RMR System and Future Trends. Comprehensive Rock Engineering: Principles, Practice and Projects. Oxford : Pergamon Press, 1993. Vol. 3. Rock Testing and Site Characterization. pp. 553–573.
13. Eremenko V. A., Khazhyylai Ch. V., Kosyreva M. A., Umarov A. R. Estimation of the stability of outcomes by the methews-potvin method under the conditions of development of secondary voltage fields in the development of salt deposits by chamber systems. Nauchnyi vestnik Arktiki. 2020. No. 9. pp. 9–14.
14. Ganqiang Tao, Mingxing Lu, Xiufeng Zhang, Rui Zhang, Zhonghua Zhu. A new diversion drawing technique for controlling ore loss and dilution during longitudinal sublevel caving. International Journal of Rock Mechanics and Mining Sciences. 2019. Vol. 113. pp. 163–171.
15. Marysyuk V. P., Sabyanin G. V., Andreev A. A., Vasiliev D. A. Stress assessment in deep-level stoping in Talnakh mines. Gornyi Zhurnal. 2020. No. 6. pp. 17–22. DOI: 10.17580/gzh.2020.06.02

Language of full-text русский
Полный текст статьи Получить
Назад