Журналы →  Горный журнал →  2023 →  №1 →  Назад

ПРИКЛАДНЫЕ ИССЛЕДОВАНИЯ
Название Оценка устойчивости закрепленной выработки на основе численного моделирования методом конечно-дискретных элементов
DOI 10.17580/gzh.2023.01.20
Автор Ильясов Б. Т., Кульсаитов Р. В., Неугомонов С. С., Солуянов Н. О.
Информация об авторе

Уральский филиал АО «ВНИМИ», Екатеринбург, Россия:

Ильясов Б. Т., зав. лабораторией, канд. техн. наук, bt.ilyasov@gmail.com

 

Магнитогорский государственный технический университет им. Г. И. Носова, Магнитогорск, Россия:

Кульсаитов Р. В., доцент, канд. техн. наук

 

ООО «Уралэнергоресурс», Магнитогорск, Россия:

Неугомонов С. С., технический директор, канд. техн. наук

 

ООО «Норникель Технические Сервисы», Санкт-Петербург, Россия:

Солуянов Н. О., главный геомеханик

  

*Работа выполнена при содействии руководителя проектной группы НИО ООО «Уралэнергоресурс» М. В. Котика (Магнитогорск, Россия).

Реферат

Описана предлагаемая авторами схема моделирования анкерного крепления линейными (1D) элементами методом конечно-дискретных элементов. Приведена методика, которую можно применять для обоснования параметров крепления выработок. В реальных условиях отработки месторождения выполнено сравнение трех схем численного моделирования для определения параметров искусственного поля напряжений. Показаны примеры моделирования напряженно-деформированного состояния массива вокруг выработок, когда действует неравнокомпонентное поле напряжений. Отражены особенности и преимущества предлагаемого подхода к расчету анкерных крепей.

Ключевые слова Анкерное крепление, метод конечно-дискретных элементов, метод конечных элементов, напряженно-деформированное состояние, трещиноватость горных пород, разрушение, запредельное деформирование
Библиографический список

1. Liskovets A. S., Tatsienko V. P. Analysis of support and tamping methods of the behind-anchoring space of mine workings and methods for calculating the interaction of the support with the rock massif. Tekhnika i tekhnologiya gornogo dela. 2021. No. 1(12). pp. 27–52.
2. Lushnikov V. N., Sandy M. P., Eremenko V. A., Kovalenko A. A., Ivanov I. A. Method of definition of the zone of rock massif failure range around mine workings and chambers by numerical modeling. Gornyi Zhurnal. 2013. No. 12. pp. 11–16.
3. Rumyantsev A. E., Trofimov A. V., Vilchinsky V. B., Marysiuk V. P. Finite-element analysis as a means of solving geomechanics problems in deep mines. Geomechanics and Geodynamics of Rock Masses : Proceedings of the 2018 European Rock Mechanics Symposium. Leiden : CRC Press/Balkema, 2018. pp. 895–902.
4. Lisjak A., Young-Schultz T., Li B., He L., Tatone B. S. A. et al. A novel rockbolt formulation for a GPU-accelerated, finite-discrete element method code and its application to underground excavations. International Jo urnal of Rock Mechanics and Mining Sciences. 2020. Vol. 134. 104410. DOI: 10.1016/j.ijrmms.2020.104410
5. Trofimov A. V., Kirkin A. P., Rumyantsev A. E., Yavarov A. V. Use of numerical modelling to determine optimum overcoring parameters in rock stress-strain state analysis. Tsvetnye Metally. 2020. No. 12. pp. 22–27. DOI: 10.17580/tsm.2020.12.03
6. Tyupin V. N. Estimation of critical depth of deposits by rock bump hazard condition. Journal of Mining Institute. 2019. Vol. 236. pp. 167–171.
7. Kandaurov I. I. Mechanics of Granular Media and Constructional Application. 2nd revised and enlarged edition. Leningrad : Stroyizdat, 1988. 280 p.
8. Stavrogin A. N., Tarasov B. G. Experimental physics and mechanics of rocks. Saint-Petersburg : Nauka, 2001. 343 p.
9. Fairhurst C., Cook N. G. W. The Phenomenon of Rock Splitting Parallel to the Direction of Maximum Compression in the Neighborhood of a Surface. Proceeding of the 1st Congress of the International Society of Rock Mechanics. Lissabon, 1966. pp. 687–692.
10. Makarov A. B. Practical geomechanics: guidance for mining engineers. Moscow : Gornaya kniga, 2006. 391 p.
11. Munjiza A. The combined finite-discrete element method. Chichester : John Wiley & Sons Ltd, 2004. 350 p.
12. Ilyasov B. T. Rock mass deformation kinetics analysis using the finite–discrete element method : Thesis of Dissertation of Candidate of Engineering Sciences. Yekaterinburg, 2016. 138 p.
13. Lisjak A., Grasselli G. A review of discrete modeling techniques for fracturing processes in discontinuous rock masses. Journal of Rock Mechanics and Geotechnical Engineering. 2014. Vol. 6, Iss. 4. pp. 301–314.
14. Stead D., Eberhardt E., Coggan J. S. Developments in the characterization of complex rock slope deformation and failure using numerical modelling tech niques. Engineering Geology. 2006. Vol. 83, Iss. 1-3. pp. 217–235.
15. Ilyasov B. T. Prognostication of rock mass deformations with using PROROCK software. Problemy nedropolzovaniya. 2018. No. 1. pp. 39–51.
16. Živaljić N., Nikolić Ž., Smoljanović H. Computational aspects of the combined finite–discrete element method in modelling of plane reinforced concrete structures. Engineering Fracture Mechanics. 2014. Vol. 131. pp. 669–686.
17. Weiqin Wang, Quansheng Liu, Hao Ma, Haifeng Lu, Zhongwei Wang. Numerical analysis of material modeling rock reinforcement in 2D FDEM and parameter study. Computers and Geotechnics. 2020. Vol. 126. 103767. DOI: 10.1016/j.compgeo.2020.103767
18. Barton N. Shear strength criteria for rock, rock joints, rockfill and rock masses: Problems and some solutions. Journal of Rock Mechanics and Geotechnical Engineering. 2013. Vol. 5, Iss. 4. pp. 249–261.
19. Louchnikov V. N., Eremenko V. A., Sandy M. P., Kosyreva M. A. Support Design for Mines Exposed to Rockburst Hazard. Journal of Mining Science. 2017. Vol. 53, No. 3. pp. 504–512.
20. Volkov P. V., Kulsaitov R. V., Magitov A. M. Technology for fixing mine workings with friction anchors of the SZA type with a new type of anticorrosive coating. IOP Conference Series: Materials Science and Engineering. 2020. Vol. 966. 012017. DOI: 10.1088/1757-899X/966/1/012017
21. Zubkov A. A., Neugomonov S. S., Volkov P. V. Improvement of mine support technology with frictional rock bolts in difficult geological conditions. Mining Industry in the 21st Century—Challenges and Reality : Proceedings of Int. Conference to Commemorate ALROSA Yakutniproalmaz Institute’s 60th Anniversary. Mirny : Pero, 2021. pp. 102–103.
22. Temporal guidance on conservation of constructions and natural objects from harmful impact of underground mining of non-ferrous metals deposits with unstudied process of rock movement. Leningrad : VNIMI, 1986. 74 p.

Language of full-text русский
Полный текст статьи Получить
Назад