Название |
Research into regularities in segregation of iron ore raw
materials on screw devices using numerical simulation |
Библиографический список |
1. Kizevalter B. V. Theoretical foundations of gravitational processes. Moscow: Nedra, 1979. 296 p. 2. Bochkovsky V. M. Delamination as the most important section of the theory and practice of gravity. Gornyi Zhurnal. 1954. No. 1. pp. 47–55. 3. Polkin S. I. Ore beneficiation. Moscow: State Scientific and Technical Publishing House of Literature on Ferrous and Non-ferrous Metallurgy, 1953. 289 p. 4. Isaev I. N. Concentration tables. Moscow: GNTI, 1962. 100 p. 5. Ivanov V. D., Prokopyev S. A. Screw devices for ore and sand beneficiation in Russia. Moscow: Publishing House «Daxi», 2000. 240 p. 6. Bogdanovich A. V. Intensification of gravitational beneficiation processes in centrifugal fields. Obogashchenie Rud. 1999. No. 1–2. pp. 33–35. 7. Bogdanovich А. V., Vasilyev А. М. Study of operation of gravity separators designed to concentrate fine-grained materials. Obogashchenie Rud. 2005. No. 1. pp. 12–15. 8. Bogdanovich A. V., Petrov S. V. Comparative tests of centrifugal concentrators of various types. Obogashchenie Rud. 2001. No. 3. pp. 38–41. 9. Vasilyev A. M. Investigation of the influence of water viscosity factors and the phenomenon of segregation on the indicators of mineral beneficiation. Zapiski Gornogo Instituta. 2006. Vol. 169. pp. 97–100. 10. Vasilyev A. M. Segregation of fine-grained material during gravity beneficiation. Zapiski Gornogo Instituta. 2006. Vol. 167. pp. 207–209. 11. Vasilyev A. M. Theoretical aspects of the phenomenon of interlayer segregation. Zapiski Gornogo Instituta. 2006. Vol. 169. pp. 93–96. 12. Fletcher D. F., Doroodchi E., Galvin K. P. The influence of inclined plates on expansion behaviour of solid suspensions in a liquid fluidised bed — А computational fluid dynamics study. Powder Technology. 2005. Vol. 156, Iss. 1. pp. 20–26. 13. Xia Y., Peng F. F. Effect of structured plates on fine coal gravity separation in a liquid fluidized bed system. Engineering Applications of Computational Fluid Mechanics. 2007. Vol. 1, Iss. 3. pp. 164–180. 14. Perepelkin M. A., Semykin E. S., Miroshnikova L. K., Ufatova Z. G. Modeling centrifugal separation process of mineral particles in gravity field using finite element method. Gornaya Promyshlennost'. 2022. No. 1. pp. 128–132. 15. Raziyeh S., Ataallah S. G. CFD simulation of an industrial hydrocyclone with Eulerian–Eulerian approach: A case study. International Journal of Mining Science and Technology. 2014. Vol. 24, Iss. 5. pp. 643–648. 16. Vakamalla T. R., Mangadoddy N. Comprehensive dense slurry CFD model for performance evaluation of industrial hydrocyclones. Industrial and Engineering Chemistry Research. 2021. Vol. 60, Iss. 33. pp. 12403–12418. 17. Aleksandrova T. N., Potemkin V. A. Development of a methodology to assess the hydrocyclone process with account of the rheological properties of the mineral slurry. Zapiski Gornogo Instituta. 2021. Vol. 252. pp. 908–916. 18. Doheim M. A., Abdel Gawad A. F., Mahran G. M. A., Abu-Ali M. H., Rizk A. M. Numerical simulation of particulateflow in spiral separators: Part I. Low solids concentration (0.3% & 3% solids). Applied Mathematical Modelling. 2013. Vol. 37, Iss. 1–2. pp. 198–215. 19. Matthews B. W., Fletcher C. A., Partridge T. C. Particle flow modelling on spiral concentrators: benefits of dense media for coal processing. Proc. of 2nd International conference on CFD in the mineral and process industries CSIRO, Melbourne, Australia, 6–8 December 1999. pp. 211–216. 20. Mishra B. K., Tripathy A. A preliminary study of particle separation in spiral concentrators using DEM. International Journal of Mineral Processing. 2010. Vol. 94. pp. 192–195. 21. Sudikondala P., Mangadoddy N., Kumar M., Tripathy S. K., Yanamandra R. M. CFD modelling of spiral concentrator — prediction of comprehensive fluid flow field and particle segregation. Minerals Engineering. 2022. Vol. 183. DOI: 10.1016/j.mineng.2022.107570 22. Pedlosky J. Geophysical fluid dynamics. New York: Springer, 1987. 710 p. 23. Batchelor G. K. An introduction to fluid dynamics. Cambridge: Cambridge University Press, 1967. 658 p. 24. Nigmatulin R. I. Fundamentals of mechanics of heterogeneous media. Moscow: Nauka, 1978. 336 p. 25. Versteeg H., Malalasekera W. An introduction to computational fluid dynamics: The finite volume method. Harlow: Pearson Education, 2007. 503 p. 26. Gosman A. D., Ioannides E. Aspects of computer simulation of liquid-fuelled combustors. Journal of Energy. 1983. Vol. 7, Iss. 6. pp. 482–490. 27. Cundall P. A., Strack O. D. L. A discrete numerical model for granular assemblies. Geotechnique. 1979. Vol. 29. pp. 47–65. 28. Fomin A. V., Khokhulya M. S. Improving efficiency of gravity separation of fine iron ore materials using computer modeling. Topical issues of rational use of natural resources. Vol. 2. London: CRC Press, 2019. pp. 509–516. 29. Skorokhodov V. F., Khokhulya M. S., Opalev A. S., Fomin A. V., Biryukov V. V., Nikitin R. M. Applications of computer simulation for hydrodynamics of multiphase media in studying separation processes in mineral dressing. Fizikotekhnicheskie Problemy Razrabotki Poleznykh Iskopayemykh. 2019. No. 2. pp. 139–153. 30. Khokhulya M. S., Fomin A. V. The use of computational fluid dynamics methods in the gravity separation of various mineral raw materials. Gorny Informatsionno-analiticheskiy Byulleten'. 2017. No. S23. pp. 474–482. 31. Skorokhodov V. F., Khokhulya M. S., Fomin A. V., Nikitin R. M. The use of computer models of separators for the performance evaluation of mineral processing. Gornyi Zhurnal. 2020. No. 3. pp. 50–55. DOI: 10.17580/gzh.2020.03.09. 32. Gray J. M. N. T. Particle segregation in dense granular flows. Annual Review of Fluid Mechanics. 2018. Vol. 50. pp. 407–433. 33. Reference book on beneficiation of ores. Vol. 2. Basic processes. Ed. 2. Moscow: Nedra, 1983. 381 p. |