Журналы →  Obogashchenie Rud →  2023 →  №1 →  Назад

SECONDARY RAW MATERIAL PROCESSING
Название Assessment of the feasibility of additional processing of tailings obtained in the processing of ores of the Gusevogorskoye deposit
DOI 10.17580/or.2023.01.06
Автор Pelevin A. E.
Информация об авторе

Ural State Mining University (Ekaterinburg, Russia):

Pelevin A. E., Professor, Doctor of Engineering Sciences, Associate Professor, a-pelevin@yandex.ru

Реферат

This paper studies the possibility of obtaining additional concentrate from the processing tailings of titanomagnetite ore of the Gusevogorskoye deposit. The potential value of the tailings decreases between the first and the last processing stages. The mass fraction of iron in the concentrates obtained from these tailings drops between dry magnetic separation tailings and wet magnetic separation tailings of the last stage (from 52.12 to 19.23 %). These values are significantly lower than the mass fraction of iron in the concentrate (62.05 %) obtained in the processing of an ore sample. Additional processing of the fine fraction of dry magnetic separation tailings rendered a product with a mass fraction of iron comparable to that in the original ore. Therefore, additional processing of dry magnetic separation tailings is a promising method for increasing the concentrate yield. Processing of the current dry magnetic separation tailings would generate additional 277,000 tons of raw materials per year with zero production and crushing costs. Higher magnetic field induction in wet magnetic separation of the first stage, with the existing technology, would increase the concentrate yield, but reduce the mass fraction of iron in it. Additional processing of the combined tailings of the wet magnetic separation of the second, third, and fourth stages is not advisable.

Ключевые слова Tailings processing, concentrate, dry magnetic separation, wet magnetic separation, mass fraction of iron, concentrate yield, iron recovery
Библиографический список

1. Zhita Yuan, Xuan Zhao, Jiwei Lu, Hong Lv, Lixia Li. Innovative pre-concentration technology for recovering ultrafine ilmenite using superconducting high gradient magnetic separator. International Journal of Mining Science and Technology. 2021. Vol. 31, Iss. 6. pp. 1043–1052.
2. Pelevin A. E., Shigaeva V. N. The potential of obtaining ilmenite concentrate from titanomagnetite ore tailings. Obogashchenie Rud. 2022. No. 2. pp. 46–52. DOI: 10.17580/or.2022.02.08
3. Shaojun Bai, Pan Yu, Zhan Ding, Yunxiao Bi, Chunlong Li, Dandan Wu, Shuming Wen. New insights into lead ions activation for microfine particle ilmenite flotation in sulfuric acid system: Visual MINTEQ models, XPS, and ToF–SIMS studies. Minerals Engineering. 2020. Vol. 155. DOI: 10.1016/j.mineng.2020.106473
4. Jiaozhong Cai, Jiushuai Deng, Hongying Yang, Linlin Tong, Dandan Wu, Shuming Wen, Zilong Liu, Ying Zhang. A novel activation for ilmenite using potas-sium permanganate and its effect on flotation response. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2020. Vol. 604. DOI: 10.1016/j.colsurfa.2020.125323
5. Degodya E. Yu., Shavakuleva O. P. Elaboration of a technology for production conditional ilmenite concentrate by enrichment of titanium-magnetite ores. Chernaya Metallurgiya. Byulleten' Nauchno-tekhnicheskoy i Ekonomicheskoy Informatsii. 2019. Vol. 75, No. 5. pp. 572–577.
6. Yan Xing, Wang Haifeng, Peng Zhen, Hao Juan, Zhang Guangwen, Xie Weining, He Yaqun. Triboelectric properties of ilmenite and quartz minerals and investigation of triboelectric separation of ilmenite ore. International Journal of Mining Science and Technology. 2018. Vol. 28, Iss. 2. pp. 223–230.
7. Pelevin A. E. Production of hematite concentrate from hematite-magnetite ore. Gorny Informatsionno-analiticheskiy Byulleten'. 2020. No. 3-1. pp. 422–430.
8. Safari M., Hoseinian F. S., Deglon D., Leal Filho L. S., Souza Pinto T. C. Investigation of the reverse flotation of iron ore in three different flotation cells: Mechanical, oscillating grid and pneumatic. Minerals Engineering. 2020. Vol. 150. DOI: 10.1016/j.mineng.2020.106283
9. Xinyang Wang, Wengang Liu, Hao Duan, Wenbao Liu, Yanbai Shen, Xiaowei Gu, Jingping Qiu, Chunyun Jia. Potential application of an eco-friendly amine oxide collector in flotation separation of quartz from hematite. Separation and Purification Technology. 2021. Vol. 278, No. 5. DOI: 10.1016/j.seppur.2021.119668
10. Hongyang Wang, Lizhangzheng Wang, SiyuanYang, Cheng Liu, Yanling Xu. Investigations on the reverse flotation of quartz from hematite using carboxymethyl chitosan as a depressant. Powder Technology. 2021. Vol. 393. pp. 109–115.
11. Chanturia V. A. Scientific substantiation and development of innovative approaches to integrated mineral processing. Gornyi Zhurnal. 2017. No. 11. pp. 7–13. DOI: 10.17580/gzh.2017.11.01
12. Sedinkina N. V., Gorlova O. E., Gmyzina N. V., Degodya E. Yu. Study of a possibility of enrichment of fine-crushed magnetite ore by dry magnetic separation. Chernaya Metallurgiya. Byulleten’ Nauchno-tekhnicheskoy i Ekonomicheskoy Informatsii. 2019. Vol. 75, No. 5. pp. 564–572.
13. Tereshchenko S. V., Shibaeva D. N., Kompanchenko A. A., Alekseeva S. A. Research of the influence of material composition and size of iron quartzites of the Olenegorsk deposit on the results of dry magnetic separation. Obogashchenie Rud. 2020. No. 6. pp. 15–20. DOI: 10.17580/or.2020.06.03
14. Shibaeva D. N., Kompanchenko A., Tereschenko S. V. Analysis of the effect of dry magnetic separation on the process of ferruginous quartzites disintegration. Minerals. 2021. Vol. 11, Iss. 8. DOI: 10.3390/min11080797
15. Lomovtsev L. A., Nesterova N. A., Drobchenko L. A. Magnetic beneficiation of strong magnetic ores. Moscow: Nedra, 1979. 235 p.
16. Fominykh V. G., Kraeva Yu. P., Larina N. V. Petrology and ore genesis of the Kachkanar massif. Sverdlovsk: RISO UNC of the USSR Academy of Sciences, 1987. 180 p.
17. Pelevin I. E., Sytykh N. A., Cherepanov D. V. Particle size impact on dry magnetic separation efficiency. Gorny Informatsionno-analiticheskiy Byulleten'. 2021. No. 11-1. pp. 293–305.
18. Pelevin A. E. Improving magnetite concentrate quality in an alternating magnetic field. Obogashchenie Rud. 2019. No. 6. pp. 19–24. DOI: 10.17580/or.2019.06.04
19. Ismagilov R. I., Kozub A. V., Gridasov I. N., Shelepov E. V. Case study: Advanced solutions applied by JSC Andrei Varichev Mikhailovsky GOK to improve ferruginous quartzite concentration performance. Gornaya Promyshlennost'. 2020. No. 4. pp. 98–103.

20. Palaniandy S., Halomoan R, Ishikawa H. TowerMill circuit performance in the magnetite grinding circuit — The multi-component approach. Minerals Engineering. 2019. Vol. 133. pp. 10–18.
21. Pelevin A. E., Sytykh N. A. Fine hydraulic screening for staged separation of titanium-magnetite concentrate. Obogashchenie Rud. 2021. No. 1. pp. 8–14. DOI: 10.17580/or.2021.01.02
22. Jian-feng Zhou, Song Zhang, Feng Tian, Chun-lei Shao. Simulation of oscillation of magnetic particles in 3D microchannel flow subjected to alternating gradient magnetic field. Journal of Magnetism and Magnetic Materials. 2019. Vol. 473. pp. 32–41.
23. Shibaeva D. N., Tereshchenko S. V. Studies on the possibility of pre-concentration of low-iron ores of the Kovdor deposit. Obogashchenie Rud. 2019. No. 5. pp. 24–28. DOI: 10.17580/or.2019.05.05
24. Karmazin V. V., Karmazin V. I. Magnetic, electric and special methods of mineral beneficiation. Vol. 1. Magnetic and electric methods of mineral beneficiation. Moscow: Gornaya Kniga, 2012. 672 p.
25. Liamas-Bueno M., López-Valdivieso A., Corona-Arroyo M. A. On the mechanisms of silica (SiO2) recovery in magnetite ore low-magnetic-drum concentration. Mining, Metallurgy & Exploration. 2019. Vol. 36. pp. 131–138.
26. Osipova N. V. Model for optimal control of a magnetic separator based on the Bellman dynamic programming method. Chernye Metally. 2020. No. 7. pp. 9–13.
27. Osipova N. V. Automatic control system for wet magnetic separation of iron ore. Gornyi Zhurnal. 2019. No. 1. pp. 62–65. DOI: 10.17580/gzh.2019.01.13
28. Yakubailik E. K., Ganzhenko I. M., Butov P. Yu., Kilin V. I. Reduce the loss iron in the wet separation in high fields. Zhurnal Sibirskogo Federalnogo Universiteta. Seriya: Tekhnika i Tekhnologii. 2016. Vol. 9, No. 8. pp. 1302–1310.
29. Pelevin A. E., Tsypin E. F., Koltunov A. V., Komlev S. G. High-intensity magnetic separators with permanent magnets. Izvestiya Vysshikh Uchebnykh Zavedeniy. Gornyi Zhurnal. 2001. No. 4–5. pp. 133–136.
30. Sunil Kumar Tripathy, Veerendra Singh, Rama Murthy Y., Banerjee P. K., Nikkam Suresh. Influence of process parameters of dry high intensity magnetic separators on separation of hematite. International Journal of Mineral Processing. 2017. Vol. 160. pp. 16–31.
31. Vaisberg L. A., Dmitriev S. V., Mezenin A. O. Controllable magnetic anomalies in mineral processing technologies. Gornyi Zhurnal. 2017. No. 10. pp. 26–32. DOI: 10.17580/gzh.2017.10.06
32. Pelevin A. E., Sytykh N. A. Increased magnetic field induction separators in titanium magnetite ore processing. Obogashchenie Rud. 2020. No. 2. pp. 15–20. DOI: 10.17580/or. 2020.02.03
33. Vaisberg L. A., Korovnikov A. N., Trofimov V. A. Innovative re-equipment of screening circuits (to commemorate the 100th anniversary of the Mekhanobr Institute). Gornyi Zhurnal. 2017. No. 1. pp. 11–17. DOI: 10.17580/gzh.2017.01.02
34. Moraes M. N., Galery R., Mazzinghy D. B. A review of process models for wet fine classification with high frequency screens. Powder Technology. 2021. Vol. 394. pp. 525–532.
35. Barbosa V. P., Menezes A. L., Gedraite R., Ataíde C. H. Vibration screening: A detailed study using image analysis techniques to characterize the bed behavior in solid–liquid separation. Minerals Engineering. 2020. Vol. 154. DOI: 10.1016/j.mineng.2020.106383

Language of full-text русский
Полный текст статьи Получить
Назад