Journals →  Gornyi Zhurnal →  2023 →  #3 →  Back

GEOLOGY, SEARCH AND EXPLORATION OF MINERALS
ArticleName Unified approach to mathematical modeling of linear parametric systems with concentrated and distributed parameters under external impact
DOI 10.17580/gzh.2023.03.02
ArticleAuthor Surnev V. B., Valiev N. G., Pyatkova V. B.
ArticleAuthorData

Ural State Mining University, Yekaterinburg, Russia:

V. B. Surnev, Head of Department, Doctor of Physical and Mathematical Sciences, igg.mt@m.ursmu.ru
N. G. Valiev, Head of Department, Doctor of Engineering Sciences
V. B. Pyatkova, Senior Lecturer

Abstract

The article describes mathematical modeling of linear parametric systems with concentrated and distributed parameters. The mathematical apparatus of modeling of parametric systems with concentrated parameters using an evolutionary integral equation, announced earlier, is extended to a general case of a system of an arbitrary physical nature. The proposed apparatus can be used for the mathematical modeling of time evolution of a linear parametric system with concentrated parameters, and within the method of automated selection when solving an inverse dynamic problem of the linear parametric system synthesis. In analogy to the mathematical model of a system with concentrated parameters, the model system of equations is written in the theory of wave field scattering by an object with constituent parameters dependent on an exogenous governing variable, i.e. the system of equations modeling the response of a linear physical system with distributed parameters under external effect to another external effect. A significant difference from the existing studies in this respect is the use of the wave field equations with the partial derivatives of the first order instead of the second-order equations. The list of applied geological and mining problems solvable using the proposed methods is given. The scope of the discussion embraces temperature instability of an inductive measuring transducer; seismic and electromagnetic profiling in re-prospecting and monitoring in metallic and nonmetallic mineral mining; mathematical modeling of high-viscosity oil recovery monitoring; monitoring of mineral salt production by vacuum evaporation; monitoring of in-situ uranium leaching.

keywords System, scattering problem, parametric dependence, mathematical model, subsequent approximation method, exogenous impacts, inductive sounding, continuous electromagnetic transmission probing, acoustic sounding
References

1. Samoylo K. A. (Ed.). Radio Technical Chains and Signals. Moscow : Radio i svyaz, 1982. 529 p.
2. Surnev V. B., Pyatkova V. B., Chelovechkov A. I. Parametric model of inductive measuring transducer. Izvestiya vuzov. Gornyi zhurnal. 2010. No. 1. pp. 49–56.
3. Surnev V. B. Mathematical model of strategic management of the production and sales system. VIII International Young Researchers’ Conference—Physics, Technology, Innovations. AIP Conference Proceedings. New York : AIP Publishing, 2022. Vol. 2466. 030045. DOI: 10.1063/5.0089992
4. Surnev V. B. Operator-matrix model of economic system with continuous time. Izvestiya Uralskogo gosudarstvennogo gornogo universiteta. 2013. No. 4(32). pp. 5–11.
5. Pyatkova V. B., Surnev V. B. Substantiation of the adequacy of the method of integral evolution equations for mathematical modeling of linear parametric systems with concentrated parameters. Izvestiya Uralskogo gosudarstvennogo gornogo universiteta. 2013. No. 1(29). pp. 3–7.
6. Surnev V. B. Scattering of elastic waves by a localized discontinuity. Izvestiya of the Academy of Sciences of the USSR. Physics of the Solid Earth. 1988. No. 2. pp. 9–19.
7. Surnev V. B. Mathematical Modeling. Continuous Deterministic Models. Yekaterinburg : Izdatelstvo UGGU, 2013. 689 p.
8. de Groot S. R., Suttorp L. G. Foundations of Electrodynamics. Amsterdam : North-Holland, 1972. 535 p.
9. Vladimirov V. S. Equations of Mathematical Physics. 4th enlarged and revised edition. Moscow : Nauka, 1981. 512 p.
10. Bakalov V. P., Zhuravleva O. B., Kruk B. I. Basic Analysis of Chains : Tutorial. Moscow : Goryachaya liniya–Telekom, Radio i svyaz, 2007. 591 p.
11. Hutson V., Pym J. S., Cloud M. J. Applications of Functional Analysis and Operator Theory. Ser.: Mathematics and Science and Engineering. 2nd ed. Amsterdam : Elsevier, 2005. Vol. 200. 427 p.
12. Surnev V. B., Pyatkova V. B., Islamgaliev D. V. Information bearer channel method in the theory of exogenous geophysical systems. Izvestiya Uralskogo gosudarstvennogo gornogo universiteta. 2019. No. 3(55). pp. 79–89.
13. Surnev V. B. Unified form of the channel coupling method in the theory of exogenous geophysical systems. VIII International Young Researchers’ Conference—Physics, Technology, Innovations. AIP Conference Proceedings. New York : AIP Publishing, 2022. Vol. 2466. 030044. DOI: 10.1063/5.0089993
14. Fedoryuk M. V. Ordinary Differential Equations. 2nd enlarged and revised edition. Moscow : Nauka, 1985. 448 p.
15. Lovitt W. V. Linear Integral Equations. New York : Dover Publications, Inc., 2005. 264 p.
16. Gelfand I. M., Shilov G. E. Generalized Functions and Applications. 2nd ed. Moscow : Fizmatlit, 1959. 471 p.
17. Fedorov F. I. Generalized Relativistic Equations. Doklady Physical Chemistry. 1952. Vol. 82. pp. 37–40.
18. Fedorov F. I. Lorentz Group. Moscow : Nauka, 1979. 384 p.
19. Bogush A. A., Moroz L. G. An Introduction to Classical Field Theory. Moscow : URSS, 2021. 384 p.
20. Gosunov S. K. Equations of Mathematical Physics : Tutorial. Moscow : Nauka, 1971. 416 p.
21. Qinghua Lei, Ke Gao. A numerical study of stress variability in heterogeneous fractured rocks. International Journal of Rock Mechanics and Mining Sciences. 2019. Vol. 113. pp. 121–133.
22. Mizohata S. The theory of partial differential equations. Cambridge : Cambridge University Press, 1973. 469 p.
23. Taylor J. R. Scattering Theory: The Quantum Theory of Nonrelativistic Collisions. New York : Dover Publications, Inc., 2000. 477 p.
24. Kutepova N. A., Moseykin V. V., Kondakova V. N., Pospehov G. B., Straupnik I. A. Specificity of properties of coal processing waste regarding their storage. GIAB. 2022. No. 12. pp. 77–93.
25. Urazakov K. R., Molchanova V. A., Tugunov P. M. Method for calculating dynamic loads and energy consumption of a sucker rod installation with an automatic balancing system. Journal of Mining Institute. 2020. Vol. 246. pp. 640–649.
26. Mendebaev T. N., Ismailov Kh. K., Izakov B. K., Smashov N. Zh. Scientific and technological foundations for groundwater extraction by the injection-forced self-discharge method. Eurasian Mining. 2021. No. 2. pp. 26–30. DOI: 10.17580/em.2021.02.06
27. Mudd G. M. Critical review of acid in situ leach uranium mining: 1. USA and Australia. Environmental Geology. 2001. Vol. 41, Iss. 3-4. pp. 390–403.
28. Noskov M. D. In-Situ Uranium Leaching : Tutorial. Seversk : Izdatelstvo STI NIYaU MIFI, 2010. 83 p.
29. Oryngozhin E. S., Fedorov E. V., Alisheva Zh. N., Mitishova N. A. In-situ leaching technology for uranium deposits. Eurasian Mining. 2021. No. 2. pp. 31–35. DOI: 10.17580/em.2021.02.07

Language of full-text russian
Full content Buy
Back