ArticleName |
Очистка рудничных дренажных вод Джидинского вольфрамо-молибденового месторождения природными сорбентами |
References |
1. Tabelin C. B., Corpuz R. D., Igarashi T., Villacorte-Tabelin M., Alorro R. D. et al. Acid mine drainage formation and arsenic mobility under strongly acidic conditions: Importance of soluble phases, iron oxyhydroxides/oxides and nature of oxidation layer on pyrite // Journal of Hazardous Materials. 2020. Vol. 399. 122844. DOI: 10.1016/j.jhazmat.2020.122844 2. Borden R. K., Brown P. L., Sturgess S. Geochemical and hydrological evolution of mine impacted waters at the Argyle Diamond Mine, Western Australia // Applied Geochemistry. 2022. Vol. 139. 105253. DOI: 10.1016/j.apgeochem.2022.105253 3. Santofimia E., López-Pamo E., Palomino E. J., González-Toril E., Aguilera Á. Acid rock drainage in Nevado Pastoruri glacier area (Huascarán National Park, Perú): hydrochemical and mineralogical characterization and associated environmental implications // Environmental Science and Pollution Research. 2017. Vol. 24. Iss. 32. P. 25243–25259. 4. Chmykhalova S. V. Effectiveness evaluation of mining as a natural and technical system with a decrease in the content of a useful component of the ore-raw material base // Eurasian Mining. 2021. No. 2. P. 36–40. DOI: 10.17580/em.2021.02.08 5. van Veenhuyzen B., Tichapondwa S., Hörstmann C., Chirwa E., Brink H. G. High capacity Pb(II) adsorption characteristics onto raw- and chemically activated waste activated sludge // Journal of Hazardous Materials. 2021. Vol. 416. 125943. DOI: 10.1016/j.jhazmat.2021.125943 6. Takahiko Arima, Ryosuke Sasaki, Takahiro Yamamoto, Carlito Baltazar Tabelin, Shuichi Tamoto et al. Effects of Environmental Factors on the Leaching and Immobilization Behavior of Arsenic from Mudstone by Laboratory and In Situ Column Experiments // Minerals. 2021. Vol. 11. Iss. 11. 1220. DOI: 10.3390/min11111220 7. Haiyan Liu, Huaming Guo, Olivier Pourret, Zhen Wang, Maohan Liu et al. Geochemical signatures of rare earth elements and yttrium exploited by acid solution mining around an ion-adsorption type deposit: Role of source control and potential for recovery // Science of the Total Environment. 2022. Vol. 804. 150241. DOI: 10.1016/j.scitotenv.2021.150241 8. Dushin A. V., Ignatуeva M. N., Yurak V. V., Ivanov A. N. Economic evaluation of environmental impact of mining: ecosystem approach // Eurasian Mining. 2020. No. 1. P. 30–36. DOI: 10.17580/em.2020.01.06 9. Кузин Е. Н., Кручинина Н. Е. Получение комплексных коагулянтов на основе минеральных концентратов и их использование в процессах очистки воды // Обогащение руд. 2019. № 3. С. 43–48. DOI: 10.17580/or.2019.03.07 10. Arefieva O. D., Tregubova V. G., Gruschakova N. V., Grinenko E. F. Removal of metals from technogenic waters from abandoned coal mines using geochemical barriers // Water Practice and Technology. 2019. Vol. 14. Iss. 3. P. 560–569. 11. Safonov A., Popova N., Andrushenko N., Boldyrev K., Yushin N. et al. Investigation of materials for reactive permeable barrier in removing cadmium and chromium(VI) from aquifer near a solid domestic waste landfill // Environmental Science and Pollution Research. 2021. Vol. 28. Iss. 4. P. 4645–4659. 12. Merchichi A., Hamou M. O., Edahbi M., Bobocioiu E., Neculita C. M. et al. Passive treatment of acid mine drainage from the Sidi-Kamber mine wastes (Mediterranean coastline, Algeria) using neighbouring phosphate material from the Djebel Onk mine // Science of the Total Environment. 2022. Vol. 807. 151002. DOI: 10.1016/j.scitotenv.2021.151002 13. Adra A., Morin G., Ona-Nguema G., Brest J. Arsenate and arsenite adsorption onto Al-containing ferrihydrites. Implications for arsenic immobilization after neutralization of acid mine drainage // Applied Geochemistry. 2016. Vol. 64. P. 2–9. 14. Гаськова О. Л., Кабанник В. Г. Экспериментальное изучение сорбции тяжелых металлов природными глинами с целью очистки дренажных вод // Химия в интересах устойчивого развития. 2009. Т. 17. № 4. С. 359–369. 15. Yerbolov S., Daumova G. Waste Water Purification from Metal Ions by Ultra-Dispersed Natural Sorbents // Journal of Ecological Engineering. 2022. Vol. 23. No. 1. P. 43–50. 16. Ajala M. A., Ambali Saka Abdulkareem, Jimoh Oladejo Tijani, Abdulsalami Sanni Kovo. Adsorptive behaviour of rutile phased titania nanoparticles supported on acid-modified kaolinite clay for the removal of selected heavy metal ions from mining wastewater // Applied Water Science. 2022. Vol. 12. 19. DOI: 10.1007/s13201-021-01561-8 17. Flieger J., Kawka J., Płaziński W., Panek R., Madej J. Sorption of Heavy Metal Ions of Chromium, Manganese, Selenium, Nickel, Cobalt, Iron from Aqueous Acidic Solutions in Batch and Dynamic Conditions on Natural and Synthetic Aluminosilicate Sorbents // Materials. 2020. Vol. 13. Iss. 22. 5271. DOI: 10.3390/ma13225271 18. Sabadash V., Gumnitsky J., Lyuta O. Combined Adsorption of the Copper and Chromium Cations by Clinoptilolite of the Sokyrnytsya Deposit // Journal of Ecological Engineering. 2020. Vol. 21. Iss. 5. P. 42–46. 19. Никашина В. А. Проницаемые геохимические барьеры как способ защиты окружающей среды от загрязнений. Природные сорбенты для решения экологических задач. Математическое моделирование и расчет процессов. Обзор // Сорбционные и хроматографические процессы. 2019. Т. 19. № 3. С. 289–304. 20. Супрун В. А., Ширяева М. А. Математическое обоснование эффективности действия смеси природных минеральных сорбентов для очистки маломинерализованных дренажных вод в зависимости от температуры // Экология и водное хозяйство. 2020. № 4(7). С. 1–11. 21. Research O. Handbook of Electrode Technology. – Orion Research Inc., 1982. – 45 p. 22. Breck D. W. Zeolite Molecular Sieves: structure, chemistry, and use. – New York : John Wiley & Sons Inc., 1974. – 771 p. |