Журналы →  Цветные металлы →  2023 →  №4 →  Назад

Автоматизация металлургических процессов
Название Системы адаптивной релейной защиты электрических сетей металлургических предприятий с распределенными источниками энергии
DOI 10.17580/tsm.2023.04.03
Автор Иванченко Д. И., Смирнов А. И.
Информация об авторе

Санкт-Петербургский горный университет, Санкт-Петербург, Россия:

Д. И. Иванченко, доцент, канд. техн. наук, эл. почта: ivanchenko_di@pers.spmi.ru
А. И. Смирнов, ассистент, канд. техн. наук, эл. почта: smirnov_ai@pers.spmi.ru

Реферат

Современная металлургическая промышленность характеризуется растущим уровнем потребления электрической энергии, необходимым для обеспечения технологического процесса. Одним из основных подходов к решению задачи эффективного и бесперебойного электроснабжения предприятий, в том числе металлургических, согласно Энергетической стратегии Российской Федерации до 2035 года, является применение систем распределенной генерации (РГ). Такие системы отличаются повышенными требованиями к устройствам релейной защиты и автоматики (РЗА), обеспечивающим надежность работы энергосистем и, соответственно, снабжение предприятий электрической энергией. В работе выполнен анализ проблем, возникающих при работе устройств РЗА в системах РГ. Проведено моделирование работы максимальной токовой защиты (МТЗ) при изменении топологии электрической сети с учетом влияния источников РГ. Проведенные исследования показали ограничения по применению традиционных устройств РЗА в сетях с источниками РГ, позволили выделить основные факторы, влияющие на работу МТЗ. На основе анализа результатов моделирования и предлагаемых методов решения проблемы применения устройств РЗА в сетях с источниками РГ было показано, что устройства РЗА должны быть адаптивными. Для решения задачи динамической подстройки защиты к изменению токов короткого замыкания (КЗ) был предложен адаптивный алгоритм выбора уставок срабатывания защиты от КЗ. Алгоритм протестирован на компьютерной модели распределительной сети с несколькими генераторами и потребителями, в которой имитировали динамические режимы электрической сети металлургического предприятия, и показал эффективность работы в подобных сетях.

Ключевые слова Распределенная генерация, релейная защита, максимальная токовая защита, короткое замыкание, адаптивная защита, автоматизация сетей
Библиографический список

1. Savchenkov S., Bazhin V. Y., Volkova O. Tendencies of innovation development of the Russian iron and steel industry on the base of patent analytics for the largest national metallurgical companies. CIS Iron and Steel Review. 2020. Vol. 20. pp. 76–82. DOI: 10.17580/cisisr.2020.02/16
2. Veselov F. V., Kulagin V. A., Makarova A. S. Prospects of the global and Russian electric power industries amid technological development. Electric Power NEWS. 2019. No. 4. pp. 4–16.
3. Gorshkova N. A., Gurevich Yu. E., Ilyushin P. V. Innovative areas in the automation of distributed generation facilities integrated into distribution grids. Relay protection and automation. 2013. No. 1. pp. 48–55.
4. Kuznetsov N., Konovalova O. Development of distributed power generation in the Murmansk Region. Fundamentalnye issledovaniya. 2021. No. 5. pp. 122–127.
5. Samylovskaya E., Makhovikov A., Lutonin A., Medvedev D., Kudryavtseva R. Digital technologies in Arctic oil and gas resources extraction: global trends and Russian experience. Resources. 2022. Vol. 11, No. 3. p. 29.
6. Shklyarskiy Y. E., Guerra D. D., Tavoleva E. V. et al. The influence of solar energy on the development of the mining industry in the Republic of Cuba. Journal of Mining Institute. 2021. Vol. 249. pp. 427–440.
7. Martynov S. A., Bazhin V. Yu., Petrov P. A. A digital control system designed for ore thermal furnaces producing metallurgical silicon. Tsvetnye Metally. 2021. No. 1. pp. 70–76. DOI: 10.17580/tsm.2021.01.08
8. Ilyushin P. Distributed generation facilities as part of a power grid: Technical issues and possible solutions. Energoekspert. 2015. No. 1. pp. 58–62.
9. Varganova A. V., Goncharova I. N., Bayramgulova Yu. N., Efimova V. A. A procedure for assessing the deployment efficiency of distributed generation sources. Vestnik Yuzhno-Uralskogo gosudarstvennogo universiteta. Seriya: Energetika. 2019. Vol. 19, No. 4. pp. 52–58.
10. Nagay V. Remote backup protection of transmission substations of radial overhead circuits. Elektrichestvo. 2002. No. 4. pp. 2–7.
11. Nagay V. Relay protection of tapping stations. Moscow : Energoatomizdat, 2002. 311 p.
12. Nagay V., Chizhov K. V., Sarry S. V., Kotlov M. M. et al. Optimization of directional overcurrent relays for remote backup of radial overhead lines with transformers on taps. Electrical stations. 1998. No. 11. pp. 39–43.
13. Mazakov E., Matrokhina K., Trofimets V. Traffic management at the enterprises of the mineral industry. Advances in Raw Material Industries for Sustainable Development Goals. London : CRC Press, 2020. pp. 397–405.
14. Safiullin R., Afanasiev A., Reznichenko V. Further development of monitoring and control systems for smart production complexes. Journal of Mining Institute. 2019. Vol. 237. pp. 322–330.
15. Kryltsov S., Makhovikov A., Korobitsyna M. Novel approach to collect and process power quality data in medium-voltage distribution grids. Symmetry. 2021. Vol. 13, No. 3. p. 460.
16. Zhukovskiy Yu. L., Lavrik A. Yu., Semenyuk A. V., Vasilkov O. S. Potential control over electric power consumption in an isolated power grid of a remote community. Sustainable Development of Mountain Territories. Series: Earth and Planetary Sciences. 2020. Vol. 12, No. 4. pp. 583–591.
17. Zatsepin E. P., Klimentiev V. V., Lykov N. A. Overcurrent protection and current cutoff on the ATmega series microcontrollers. News of higher educational institutions of the Chernozem region. 2020. No. 2. pp. 52–56.
18. Shestakov D. N. Design of overcurrent protection and current cutoffs of 6, 10, 35 kV lines. 2007. Available at: https://www.studmed.ru/shestakov-d-nraschet-maksimalnoy-tokovoy-zaschity-i-tokovyh-otsechek-liniy-6-10-35-kv_6a63d5037ae.html
19. Eroshenko S. A., Egorov A. O., Senyuk M. D. et al. Calculation of short circuit currents in power grids: Learner’s guide. Publishing House of the Ural University, 2019. 104 p.
20. Serebryakov A. S., German L. A., Osokin V. L. et al. Analysis of methods for calculating the short circuit currents for a Y/ -11 transformer. Electronics and electrical equipment of transport. 2017. No. 5. pp. 19–25.
21. Brahma S. M., Girgis A. A. Development of adaptive protection scheme for distribution systems with high penetration of distributed generation. IEEE Transactions on Power Delivery. 2004. Vol. 19, No. 1. pp. 56–63.
22. Yang H., Wen F., Ledwich G. Optimal coordination of overcurrent relays in distribution systems with distributed generators based on differential evolution algorithm. International Transactions on Electrical Energy Systems. Wiley Online Library, 2013. Vol. 23, No. 1. Available at: https://onlinelibrary.wiley.com/doi/epdf/10.1002/etep.635
23. Yazdanpanahi H., Li Y. W., Xu W. A new control strategy to mitigate the impact of inverter-based DGs on protection system. IEEE Transactions on Smart Grid. 2012. Vol. 3, No. 3. pp. 1427–1436.
24. Alam M. N. Adaptive protection coordination scheme using numerical directional overcurrent relays. IEEE Transactions on Industrial Informatics. 2018. Vol. 15, No. 1. pp. 64–73.
25. Baran M., El-Markabi I. Adaptive over current protection for distribution feeders with distributed generators. Power Systems Conference and Exposition. 2004. pp. 715–719.
26. Mahat P. et al. A simple adaptive overcurrent protection of distribution systems with distributed generation. IEEE Transactions on Smart Grid. 2011. Vol. 2, No. 3. pp. 428–437.
27. Sulaiman M., Muhammad S., Khan A. Improved solutions for the optimal coordination of docrs using firefly algorithm. Hindawi. 2018. Vol. 2018. Article ID 7039790.
28. Karrizosa M. Kh., Stankovich N., Baydarov A. I. et al. A control system for trunk DC power line with modular multilevel converters. Journal of Mining Institute. 2020. Vol. 243. pp. 357–370.

29. Klyuev R., Bosikov I., Gavrina O. A. Enhanced efficiency of relay protection and controls at a mining and processing facility. Journal of Mining Institute. 2021. Vol. 248. pp. 300–311.
30. Bedekar P. P., Bhide S. R., Kale V. S. Optimum coordination of overcurrent relay timing using simplex method. Electric Power Components and Systems. 2010. Vol. 38, Iss. 10. pp. 1175–1193.
31. Irfan M., Oh S.-R., Rhee S.-B. An effective coordination setting for directional overcurrent relays using modified harris hawk optimization. Electronics. 2021. Vol. 10, No. 23. p. 3007.
32. Huynh D. H., Tran X. K. A modeling of distance protection relay based on Kalman filter: An application for Vietnam’s 500kV power transmission lines. 2017 IEEE International Conference on Smart Grid and Smart Cities (ICSGSC). 2017. pp. 157–161.
33. Brigadnov I., Lutonin A., Bogdanova K. Error state extended Kalman filter localization for underground mining environments: 2. Symmetry. 2023. Vol. 15, No. 2. p. 344.
34. Su C. et al. An adaptive control strategy of converter based DG to maintain protection coordination in distribution system. 5th IEEE PES Innovative Smart Grid Technologies Europe. 2014. Available at: https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7028900
35. Javadian S., Haghifam M.-R. Implementation of a new protection scheme on a real distribution system in presence of DG. Joint International Conference on Power System Technology and IEEE Power India Conference. 2008. Available at: https://ieeexplore.ieee.org/document/4745215
36. Ulakhovich D. A. Fundamentals of linear electric circuits. St. Petersburg : BkhV-Peterburg, 2009. 816 p.
37. Atkins K. et al. The structure of electrical networks: a graph theory based analysis. International Journal of Critical Infrastructures. Inderscience Publishers, 2009. Vol. 5, No. 3. pp. 265–284.
38. Shcherbinin A., Naumov M., Subbotin E. Direct, reverse and zero sequence resistances determined with the help of mathematical modelling of electromagnetic processes. Elektrotekhnika. 2021. No. 11. pp. 24–28.
39. Nurmatov O., Muminova M. Symmetrical component method applied for transient process studies: Analysis. Power Industry and Energy Conservation: Theory and Practice: Proceedings of the 4th National Russian Conference. 2018. 243–1.
40. Skamyin A., Shklyarscky Ya., Dobush V., Dobush I. Experimental determination of parameters of nonlinear electrical load. Energies. 2021. Vol. 14, No. 22. p. 7762.

Полный текст статьи Системы адаптивной релейной защиты электрических сетей металлургических предприятий с распределенными источниками энергии
Назад