Журналы →  Tsvetnye Metally →  2023 →  №4 →  Назад

Название Automatic burden balance monitoring and control in the production of metallurgical silicon
DOI 10.17580/tsm.2023.04.07
Автор Bazhin V. Yu., Masko O. N., Martynov S. A.
Информация об авторе

Saint Petersburg Mining University, Saint Petersburg, Russia:

V. Yu. Bazhin, Head of the Metallurgy Department, Professor, Doctor of Technical Sciences, e-mail: bazhin_vyu@pers.spmi.ru
O. N. Masko, Postgraduate Student at the Department of Process and Plant Automation, e-mail: olgamasko.17@gmail.com
S. A. Martynov, Assistant Lecturer at the Department of Process and Plant Automation, Candidate of Technical Sciences, e-mail: direktor062@mail.ru


Production of metallurgical silicon for Al – Si alloys and silumins is of strategic importance and defines the future of a great number of Russian industries. Reducing the weight of commercial silica, which belongs to the expenditure side of the balance, is the key resource-saving objective of the silicon industry. In today’s environment, it is necessary to develop a monitoring and control system for quartz burden used for the production of metallurgical silicon as it would help tackle the issues caused by the reliance on different sources of raw materials, which can differ in terms of impurities content. This can affect the energy performance of the smelter and the quality of the final product. At the basis of the proposed system there lie mathematical calculations and models built with an account for the physicochemical and polymorphous transformations of the quartz material during smelting in an ore-thermal furnace. The paper relies on the relationships obtained earlier that show how the amount of microsilica and the type of emissions are determined by the chemical composition and the size distribution, the structure of quartz material and the smelting temperature. A CFD model of the exhaust duct of the furnace was used to obtain new data on dust and gas emissions. As a result, an algorithm was built that help analyze how the quality of the mineral material influences the amount and the type of emissions generated by silicon industry. The authors implemented a central data acquisition and analysis module that links the chemical composition with the size distribution of three samples of the quartz material while coordinating them with the key smelting parameters (i.e. speed, exhaust gas pressure, electric mode). The material balance monitoring and control software, which accounts for impurities as elements and compounds, as well as transition and phase states of silica at all process stages, enables to control the output of waste in the form of microsilica of required structure in order to process it and obtain high value-added materials. The proposed balance monitoring and control scheme will help raise the process efficiency by 15–20%.

Ключевые слова Metallurgical silicon, carbothermic reduction, ore-thermal furnace, impurities, monitoring of chemical composition, silica balance, polymorphism typical of microsilica
Библиографический список

1. Nedosekin A. O., Reyshakhrit E. I., Kozlovskiy A. N. A strategic approach to assessing the economic resilience of Russia’s mineral sector. Journal of Mining Institute. 2019. Vol. 237. pp. 354–360. DOI: 10.31897/pmi.2019.3.354
2. Safiullin R. N., Afanasiev A. S., Reznichenko V. V. Further development of monitoring and control systems for smart production complexes. Journal of Mining Institute. 2019. Vol. 237. pp. 322–330. DOI: 10.31897/pmi.2019.3.322
3. Yolkin K. S., Sivtsov A. V., Yolkin D. K., Karlina I. Silicon metallurgy and ecology problems. KnE Materials Science. 2020. pp. 239–242. DOI: 10.18502/kms.v6i1.8073
4. Litvinenko V., Tcvetkov P., Molodtsov K. V. The social and market mechanism of sustainable development of public companies in the mineral resource sector. Eurasian Mining. 2020. Vol. 1. pp. 36–41. DOI: 10.17580/em.2020.01.07
5. Litvinenko V. Digital economy as a factor in the technological development of the Mineral sector. Natural Resources Research. 2019. Vol. 29. DOI: 10.1007/s11053-019-09568-4
6. Gotze J., Pan Yu., Müller A. Mineralogy and mineral chemistry of quartz: A review. Mineralogical Magazine. 2021. Vol. 85. pp. 639–664. DOI: 10.1180/mgm.2021.72
7. Potrafke A., Breiter K., Ludwig T., Neuser R. D., Stalder R. Variations of OH defects and chemical impurities in natural quartz within igneous bodies. Physics and Chemistry of Minerals. 2020. Vol. 47. 24. DOI: 10.1007/s00269-020-01091-w
8. Shah S. A., Shao Y., Zhang Y. Texture and trace element geochemistry of quartz: A Review. Minerals. 2022. Vol. 12. 1042. DOI: 10.3390/min12081042
9. GOST 9854–81. Cristalline quarzites for the production of silica products. Specifications. Introduced: 01.01.1982.
10. Nemchinova N. V., Hoang V. V., Tyutrin A. A. Formation of impurity inclusions in silicon when smelting in ore-thermal furnaces. IOP Conference Series: Materials Science and Engineering. 2020. Vol. 969. 012038. DOI: 10.1088/1757-899X/969/1/012038
11. Nemchinova N. V., Tyutrin A. A., Sokolnikova Yu. V., Fereferova T. T. Analytical studies of raw materials for and products of silicon industry. Journal of Siberian Federal University. Chemistry. 2017. Vol. 10. pp. 37–48.
12. Gembitskaya I. M., Gvozdetskaya M. V. Transformation of feedstock grains when producing fine powders. Journal of Mining Institute. 2021. Vol. 249. pp. 401–407. DOI: 10.1088/1742-6596/1384/1/012040
13. Vasilieva N. V., Boykov A. V., Erokhina O. O., Trifonov A. Yu. Automatic digitalization of pie charts. Journal of Mining Institute. 2021. Vol. 247. pp. 82–87. DOI: 10.31897/PMI.2021.1.9
14. Chigondo F. From metallurgical-grade to solar-grade silicon: An overview. Silicon. 2018. Vol. 10. pp. 789–798. DOI: 10.1007/s12633-016-9532-7
15. Evseev N. V., Tyutrin A. A., Pastukhov M. P. Granulation of dust waste generated by the silicon industry for its reutilization. Vestnik Irkutskogo gosudarstvennogo tekhnicheskogo universiteta. 2019. Vol. 23. pp. 805–815. DOI: 10.21285/1814-3520-2019-4-805-815
16. Nemchinova N. V., Mineev G. G., Tyutrin A. A., Yakovleva A. A. Utilization of dust from silicon production. Steel in Translation. 2017. Vol. 47, Iss. 12. pp. 763–766. DOI: 10.3103/S0967091217120087
17. Leonova M. S., Timofeeva S. S. Environmental and economic damage from the dust waste formation in the silicon production. IOP Conference Series Earth and Environmental Science. 2019. Vol. 229. 012022. DOI: 10.1088/1755-1315/229/1/012022
18. Leonova M. S., Timofeeva S. S., Murzin M. A. Dust load in silicon production and occupational risks. IOP Conference Series Earth and Environmental Science. 2019. Vol. 687, Iss. 6. 066012. DOI: 10.1088/1757-899X/687/6/066012
19. Leonova M. S., Timofeeva S. S. Impact of dust emissions from the silicon production on working conditions. IOP Conference Series Earth and Environmental Science. 2020. Vol. 408, Iss. 1. 012026. DOI: 10.1088/1755-1315/408/1/012026

20. Boduen A. Ya., Petrov G. V., Kobylyansky A. A., Bulaev A. G. Sulfide leaching of high-grade arsenic copper concentrates. Obogashchenie Rud. 2022. No. 1. pp. 14–19. DOI: 10.17580/or.2022.01.03
21. Sindland C., Tangstad M. Production rate of SiO gas from industrial quartz and silicon. Metallurgical and Materials Transactions. 2020. Vol. B 52, Iss. 3. DOI: 10.1007/s11663-021-02143-4
22. Folstad M. B., Ringdalen E., Tveit H., Tangstad M. Effect of different SiO2 polymorphs on the reaction between SiO2 and SiC in Si production. Metallurgical and Materials Transactions. 2021. Vol. B 52, Iss. 6. DOI: 10.1007/s11663-020-02053-x
23. Abdurakhmanov B. M., Kurbanov M. Sh., Tulaganov S. A., Ernazarov M., Andriyko L. S. et al. Synthesis of superfine amorphous silicon dioxide powders from metallurgical waste. Uzbek Journal of Physical. 2021. Vol. 23, No. 1. pp. 65–74. DOI: 10.52304/.v23i1.226
24. Shestakov A. K., Sadykov R. M., Petrov P. A. Multifunctional crust breaker for automatic alumina feeding system of aluminum reduction cell. E3S Web of Conferences. 2021. Vol. 266. 09002. DOI: 10.1051/E3SCONF/202126609002
25. Burkat V. S., Burkat T. V., Lapshin A. E. Investigation of physical and chemical properties of siliceous dust of ore-thermal furnaces. Tsvetnye Metally. 2017. No. 4. pp. 30–34. DOI: 10.17580/tsm.2017.04.04
26. Legemza J., Findorák F., Bulko B., Brianсin J. New approach in research of quartzes and quartzites for ferroalloys and silicon production. Metals. 2021. Vol. 11(4). 670. DOI: 10.3390/met11040670
27. Asanov D. A., Zapasnyi V. V., Ermekova A. T., Maratova G. R., Ivanov A. A. et al. Current status of dust collection systems in aksu ferroalloy plant smelting shop 1 and functional improvement to these systems. Metallurgist. 2018. Vol. 62. pp. 391–400. DOI: 10.1007/s11015-018-0673-3
28. Chaklader A. C. D. Effect of trace Al2O3 on transformation of quartz to cristobalite. Journal of the American Ceramic Society. 1961. Vol. 44. pp. 175–180.
29. Brown S. D., Kistler S. S. Devitrification of high-SiO2 glasses of the system Al2O3 – SiO2. Journal of the American Ceramic Society. 1959. Vol. 42, No. 6. pp. 263–270. DOI: 10.1111/j.1151-2916.1959.tb12951.x
30. Legemza J., Findorák F., Bulko B., Brianсin J. New approach in research of quartzes and quartzites for ferroalloys and silicon production. Metals. 2021. Vol. 11. 670. DOI: 10.3390/met11040670
31. Bazhin V. Yu, Masko O. N. Use of a computational fluid dynamics model to analyze the relationship between the concentration of solid particles in the gas exhaust duct of a furnace and the temperature. Computing, Telecommunication and Control. 2022. Vol. 15, No. 1. pp. 51–63. DOI: 10.18721/JCSTCS.15105
32. Beloglazov I., Krylov K. An interval-simplex approach to determine technological parameters from experimental data. Mathematics. 2022. Vol. 10. 2959. DOI: 10.3390/math10162959
33. Beloglazov I. I., Sabinin D. S., Nikolaev M. Yu. Modelling of the disintegration process in ball mills with the help of discrete element method. Gornyy informatsionno-analiticheskiy byulleten. 2022. No. 6-2. pp. 268–282. DOI: 10.25018/0236_1493_2022_62_0_268
34. Shestakov A. K., Petrov P. A., Nikolaev M. Yu. Automatic system for detecting visible emissions in a potroom of aluminium plant based on technical vision and a neural network. Metallurg. 2022. No. 10. pp. 105–112. DOI: 10.52351/00260827_2022_10_105
35. Ringdalen E., Einarsrud E. K., Nordhus A. Gas flow and pressure drop in charge material in silicon production. JOM. 2022. Vol. 74. pp. 3971–3979. DOI: 10.1007/s11837-022-05431-9
36. Elkin K. S., Rozhikhina I. D., Nokhrina O. I., Sivtsov A. V., Kashlev I. M. et al. Effect of the genetic features of quartzites on the performance of reduction smelting of silicon and ferrosilicium. Metallurgy: Technology, Innovation, Quality. Proceedings of the 21st International Conference. Part 2. 2019. pp. 4–12.
37. Sivtsov А. V., Yolkin K. S., Kashlev I. M., Karlina I. Processes in the charge and hearth zones of furnace working spaces and problems in controlling the batch dosing mode during the smelting of industrial silicon and highsilicon ferroalloys. Metallurgist. 2020. Vol. 64. pp. 396–403. DOI: 10.1007/s11015-020-01008-6
38. Sivtsov А. V., Yolkin K. S., Pankov V. A., Karlina I. Specific features of the electric mode of the technological process of smelting of commercial silicon. Metallurgist. 2021. Vol. 64. pp. 923–930. DOI: 10.1007/s11015-021-01073-5
39. Bazhin V. Yu, Masko O. N. A computer programme for analyzing how the quality of raw materials and the temperature regime of an ore thermal furnace influence the formation of microsilica. Certificate of State Registration for Computer Programme RF, No. 2022666844. Applied: 05.09.2022. Published: 07.09.2022. Bulletin No. 9.
40. Fedorova E., Pupysheva E., Morgunov V. Modelling of red-mud particlesolid distribution in the feeder cup of a thickener using the combined CFDDPM approach. Symmetry. 2022. Vol. 14. 2314. DOI: 10.3390/sym 14112314
41. Kuvykin V. I., Kuvykina E. V., Matveev A. E., Sychev A. G. Enhancing the production performance through the use of a material balance control scheme. Sovremennye naukoemkie tekhnologii. 2019. No. 4. pp. 36–40. DOI: 10.17513/snt.37488
42. Boikov A., Payor V., Savelev R., Kolesnikov A. Synthetic data generation for steel defect detection and classification using deep learning. Symmetry. 2021. Vol. 13. 1176. DOI: 10.3390/sym13071176

Полный текст статьи Automatic burden balance monitoring and control in the production of metallurgical silicon