Журналы →  Горный журнал →  2023 →  №5 →  Назад

ОБЕСПЕЧЕНИЕ ГЕОДИНАМИЧЕСКОЙ БЕЗОПАСНОСТИ
Название Оценка эффективности бурения разгрузочных скважин для приведения выработок в неудароопасное состояние методами численного и физического моделирования
DOI 10.17580/gzh.2023.05.05
Автор Багаутдинов И. И., Зуев Б. Ю., Стрешнев А. А.
Информация об авторе

Научный центр геомеханики и проблем горного производства, Санкт-Петербургский горный университет, Санкт-Петербург, Россия:

Багаутдинов И. И., ведущий научный сотрудник лаборатории горного давления на рудных и нерудных месторождениях, канд. техн. наук
Зуев Б. Ю., зав. лабораторией моделирования, канд. техн. наук, b.zuev2010@yandex.ru

 

Кировский филиал АО «Апатит», Кировск, Россия:
Стрешнев А. А., начальник Службы прогноза и предотвращения горных ударов

Реферат

Предложена комплексная методика численного и физического моделирования с целью повышения достоверности оценки эффективности бурения разгрузочных скважин для приведения выработок в неудароопасное состояние. Процесс формирования разгрузочной щели на контуре одиночной выработки при численном моделировании выполнен с помощью сертифицированного программного комплекса PLAXIS 3D компании Bentley Systems в трехмерной осесимметричной постановке. Процессы, связанные с формированием разгрузочной щели на контуре одиночной выработки, были также воспроизведены с помощью метода физического моделирования на эквивалентных материалах. Приведенные результаты свидетельствуют о перспективности взаимного применения методов физического и численного моделирования для повышения достоверности выполняемых исследований.

Ключевые слова Численное моделирование, физическое моделирование, лабораторные испытания, эквивалентные материалы, разгрузочные скважины
Библиографический список

1. Trushko V. L., Protosenya A. G. Prospects of geomechanics development in the context of new technological paradigm. Journal of Mining Institute. 2019. Vol. 236. pp. 162–166.
2. Shabarov A. N., Zubkov V. V., Mishin N. I., Arshavskiy V. V., Badtiev B. P. Geodynamical simulation of the ore deposit. Gornyi Zhurnal. 2004. No. 12. pp. 32–35.
3. Semenova I. E., Avetisyan I. M. Geomechanical foundation for mining in rockbursthazardous conditions: Concept development. Gornyi Zhurnal. 2022. No. 1. pp. 28–33. DOI: 10.17580/gzh.2022.01.05
4. Baojie Fan, Fujun Zhao, Bin Wang, Qiuhong Wu, Zongtang Zhang. Rockburst Occurrence Mechanism Based on the Self-Sustaining Time-Varying Structure of Surrounding Rock. Shock and Vibration. 2020. Vol. 2020. ID 8864336. DOI: 10.1155/2020/8864336
5. Zuev B. Yu. Methodology of modeling nonlinear geomechanical processes in blocky and layered rock masses on models made of equivalent materials. Journal of Mining Institute. 2021. Vol. 250. pp. 542–552.
6. Zuev B. Yu., Zubov V. P., Fedorov A. S. Application prospects for models of equivalent materials in studies of geomechanical processes in underground mining of solid minerals. Eurasian Mining. 2019. No. 1. pp. 8–12. DOI: 10.17580/em.2019.01.02
7. Sergunin M. P., Darbinyan T. P., Mushtekenov T. S., Balandin V. V. Assessment of destressing drilling efficiency using numerical methods: A case-study of Oktyabrsky deposit. Gornyi Zhurnal. 2021. No. 2. pp. 26–31. DOI: 10.17580/gzh.2021.02.03
8. Lovchikov A. V., Zemtzovsky A. V. Rockburst prevention in deep ore pillars by forming relieve slots (for the Lovozero raremetal deposit). Vestnik MGTU. 2019. No. 1. pp. 158–166.
9. Pestrenin V. M., Pestrenina I. V., Kostromina P. P. Influence of unloading slots on the stressed state and creep of a rock mass in the vicinity of an excavation. Vychislitelnaya mekhanika sploshnykh sred. 2011. Vol. 4, No. 2. pp. 110–118.
10. Marysyuk V. P., Darbinyan T. P., Andreev A. A., Noskov V. A. Efficiency of modification of the copper–nickel sulfide ore mining system in the Oktyabrsky mine. Gornyi Zhurnal. 2019. No. 11. pp. 19–23. DOI: 10.17580/gzh.2019.11.02
11. Shabarov A., Kuranov A., Popov A., Tsirel S. Geodynamic risks of mining in highly stressed rock mass. Problems in Geomechanics of Highly Compressed Rock and Rock Massifs : Proceedings of the 1st International Scientific Conference. E3S Web of Conferences. 2019. Vol. 129. 01011. DOI: 10.1051/e3sconf/201912901011
12. Bagautdinov I., Kuranov A., Belyakov N., Streshnev A. The reasoning of mining methods parameters toward development of the apatite–nepheline ore deposits based on results of forecast of massif stress state. Problems of Complex Development of Georesources : Proceedings of VII International Scientific Conference. E3S Web of Conferences. 2018. Vol. 56. 01019. DOI: 10.1051/e3sconf/20185601019
13. Rasskazov I. Yu., Kursakin G. A., Potapchuk M. I., Rasskazov M. I. Geomechanic assessment of technological decisions for designing mining operations in of burst hazardous conditions. Journal of Mining Institute. 2012. Vol. 198. pp. 80–85.
14. Kiselev V., Guseva N., Kuranov A. Creating Forecast Maps of the Spatial Distribution of Dangerous Geodynamic Phenomena Based on the Principal Component Method. IOP Conference Series: Earth and Environmental Science. 2021. Vol. 666. 032071. DOI: 10.1088/1755-1315/666/3/032071
15. Hoek E., Brown E. T. Empirical Strength Criterion for Rock Masses. Journal of the Geotechnical Engineering Division. 1980. Vol. 106, Iss. 9. pp. 1013–1035.
16. PLAXIS 2D. Bentley Systems, Inc., 2022. Available at: https://www.bentley.com/software/plaxis-2d/ (accessed: 15.06.2022).
17. Sergunin M. P., Alborov A. E., Andreev A. A., Buslova M. A. Stress assessment ahead of stoping front with widening stress relief zone—A case study of the Oktyabrsky and Talnakh deposits. Gornyi Zhurnal. 2020. No. 6. pp. 38–41. DOI: 10.17580/gzh.2020.06.06
18. Marysyuk V. P., Shilenko S. Yu., Andreev A. A., Shabarov A. N. Interwell area design procedure to generate safe zones in rockburst-hazardous conditions of Talnakh deposits. Gornyi Zhurnal. 2023. No. 1. pp. 106–112. DOI: 10.17580/gzh.2023.01.18
19. Zubov V. P., Phuc L. Q. Development of resource-saving technology for excavation of flatlying coal seams with tight roof rocks (on the example of the Quang Ninh coal basin mines). Journal of Mining Institute. 2022. Vol. 257. pp. 795–806.
20. Zubov V. P., Golubev D. D. Prospects for the use of modern technological solutions in the flat-lying coal seams development, taking into account the danger of the formation of the places of its spontaneous combustion. Journal of Mining Institute. 2021. Vol. 250. pp. 534–541.
21. Protosenya A., Vilne M. Assessment of excavation intersections’ stability in jointed rock masses using the discontinuum approach. Rudarsko-geološko-naftni zbornik. 2022. Vol. 37, No. 2. pp. 137–147.
22. Nguyen Tai Tien, Karasev M. A., Vilner M. A. Study of the stress-strain s tate in the sub-rectangular tunnel. Geotechnics for Sustainable Infrastructure Development : Proceedings of the 4th International Conference. Ser.: Lecture Notes in Civil Engineering. Singapore : Springer, 2020. Vol. 62. pp. 383–388.
23. Vilner M., Nguen T. T., Korchak P. The assessment of the roof beam stability in mining workings. Scientific and Practical Studies of Raw Material Issues : Proceedings of the Russian–German Raw Materials Dialogue: A Collection of Young Scientists Papers and Discussion. Leiden : CRC Press/Balkema, 2019. pp. 53–57.
24. Guoxiang Yang, Leung A. K., Nengxiong Xu, Kunxiang Zhang, Kunpeng Gao. Three-Dimensional Physical and Numerical Modelling of Fracturing and Deformation Behavior of Mining-Induced Rock Slopes. Applied Sciences. 2019. Vol. 9. 1360. DOI: 10.3390/app9071360
25. Hongtao Liu, Linfeng Guo, Guangming Cao, Xidong Zhao, Pengfei Wang et al. Comprehensive Study of Strata Movement Behavior in Mining a Longwall Top Coal Caving Panel of a Composite Coal Seam with Partings. Applied Sciences. 2020. Vol. 10. 5311. DOI: 10.3390/app10155311
26. Mighe Ju, Dapeng Wang, Jingcheng Shi, Jianchun Li, Qiangling Yao et al. Physical and n umerical inve stigation of be dding adhesio n strength on stratified rock roof fracture with longwall coal mining. Geomechanics and Geophysics for Geo-Energy and Geo-Resources. 2021. Vol. 7, Iss. 1. 24. DOI: 10.1007/s40948-020-00209-2
27. Pengfei Wang, Jingli Zhao, Yoginder P. Chugh, Zhiqiang Wang. A Novel Longwall Mining Layout Approach for Extraction of Deep Coal Deposits. Minerals. 2017. Vol. 7, Iss. 4. 60. DOI: 10.3390/min7040060
28. Wan-rong Liu. Experimental and Numerical Study of Rock Stratum Movement Characteristics in Longwall Mining. Shock and Vibration. 2019. Vol. 2019. ID 5041536. DOI: 10.1155/2019/5041536
29. Weiming Guan, Qi Qi, Zhiyi Zhang, Senlin Nan. Effect of Sand Particle Size on Microstructure and Mechanical Properties of Gypsum-Cemented Similar Materials. Materials. 2020. Vol. 13, Iss. 3. 765. DOI: 10.3390/ma13030765
30. Litvinenko V. S., Dvoynikov M. V., Trushko V. L. Elaboration of a conceptual solution for the development of the Arctic shelf from seasonally flooded coastal areas. International Journal of Mining Science and Technology. 2022. Vol. 32, Iss. 1. pp. 113–119.
31. Litvinenko V. S., Tsvetkov P. S., Dvoynikov M. V., Buslaev G. V. Barriers to implementation of hydrogen initiatives in the context of global energy sustainable development. Journal of Mining Institute. 2020. Vol. 244. pp. 428–438.
32. Gospodarikov A. P., Morozov K. V., Revin I. E. A method of data interpretation in seismicity and deformation monitoring in underground mining in terms of the Kukisvumchorr deposit of Apatit company. GIAB. 2019. No. 8. pp. 157–168.
33. Morozov K. V. Creation of rock mass monitoring deformations systems on rock burst hazardous mineral deposits. Rock Mechanics for Natural Resources and Infrastructure Development—Full Papers : Proceedings of the 14th International Congress on Rock Mechanics and Rock Engineering. London : CRC Press, 2020. pp. 1318–1323.
34. Gospodarikov A. P., Revin I. E., Morozov K. V. Composite model of seismic monitoring data analysis during mining operations on the example of the Kukisvumchorr deposit of AO Apatit. Journal of Mining Institute. 2023. DOI: 10.31897/PMI.2023.9
35. Morozov K. V., Demekhin D. N., Bakhtin E. V. Multicomponent strain gauges for assessing the stress-strain state of a rock mass. GIAB. 2022. No. 6-2. pp. 80–97.

Полный текст статьи Оценка эффективности бурения разгрузочных скважин для приведения выработок в неудароопасное состояние методами численного и физического моделирования
Назад