Журналы →  Obogashchenie Rud →  2023 →  №3 →  Назад

ORE PREPARATION
Название Research of the staged iron ore concentrate recovery regimes with a change in the orematerial composition
DOI 10.17580/or.2023.03.01
Автор Opalev A. S., Alekseeva S. A., Cherezov A. A.
Информация об авторе

Mining Institute of Kola Science Centre RAS (Apatity, Russia):

Opalev A. S., Vice Director for Sciences, Candidate of Engineering Sciences, a.opalev@ksc.ru
Alekseeva S. A., Senior Researcher, s.alekseeva@ksc.ru
Cherezov A. A., Leading Engineer, a.cherezov@ksc.ru

Реферат

In order to improve the grade of iron ore concentrates for ores of various material compositions of the Zaimandrovskaya deposit group, a scientific and methodological substantiation was prepared for establishing the optimal ore preparation regimes when implementing the staged concentrate recovery technology using magnetic-gravity separation. The studies included analyses of mineralogical and technological features of raw materials, closed-cycle grindability tests with different screening sizes, and magnetic-gravity separation tests using the products obtained. Three varieties of magnetite ores of the Zaimandrovskaya ore field (ordinary ores, low-grade ores with a high content of silicates, and magnetite-hematite ores) were used as an example to substantiate the optimal ore preparation regimes when implementing the above technology. The screening size options were 0.1, 0.125, and 0.16 mm, as used at existing production facilities. It has been shown that the maximum specific performance for the newly formed class of –0.071 mm and the lowest specific grinding costs are, in all cases, achieved when using the grain size of 0.125 mm. At the same time, the mass fraction of the –0.071 mm class in the finished grinding product is 55–57 %, and the magnetite liberation exceeds 80%. Subsequent magnetic-gravity separation of such a product yields high-grade concentrates with a mass fraction of Fetot of approximately 71 % for all ore varieties. The Fetot recoveries into the concentrate were 86–89 % for the magnetite ores and around 70 % for the magnetite-hematite ores.

Ключевые слова Iron ore concentrate, staged concentrate recovery, fine screening, magnetic-gravity separation, grinding, processing efficiency
Библиографический список

1. Pelevin A. E. Ways of efficiency increasing of iron ore raw materials concentration technology. Chernaya Metallurgiya. Byulleten' Nauchno-tekhnicheskoy i Ekonomicheskoy Informatsii. 2019. Vol. 75, No. 2. pp. 137–146.
2. Rudyka V. I. The prospects for the technology for the direct reduction of the iron in the metallurgical production. Chernaya Metallurgiya. Byulleten' Nauchno-tekhnicheskoy i Ekonomicheskoy Informatsii. 2017. No. 11. pp. 14–22.
3. Dorofeev G. A., Parshin V. M. The new concept of resource conservation in the production of steel. Izvestiya Tulskogo Gosudarstvennogo Universiteta. Tekhnicheskie Nauki. 2017. Iss. 1. pp. 58–72.
4. Baranov V. F., Patkovskaya N. А., Tasina Т. I. Current trends in magnetite iron ores processing technology. Basic trends. Obogashchenie Rud. 2013. No. 3. pp. 10–17.
5. Maksimov I. I., Sentemova V. A. Special features of high-magnetite oxidized ferruginous quartzites processing technology. Obogashchenie Rud. 2012. No. 3. pp. 7–10.
6. Pelevin A. E., Kornilkov S. V., Dmitriev A. N., Bagazeev V. K. Quality improvement of magnetite concentrate in separate processing of different iron ore types and varieties. Gornyi Informatsionno-analiticheskiy Byulleten'. 2021. No. 11-1. pp. 306–317.
7. Jankovic A. Comminution and classification technologies of iron ore. Iron ore: Mineralogy, processing and environmental sustainability. 2 ed. Chap. 8. Woodhead Publishing, 2021. pp. 269–308.
8. Oleinik T. A., Mulyavko V. I., Lyashenko V. I., Oleinik M. O. The development of the technologies and technical facilities for the concentration of the hematite ores. Chernaya Metallurgiya. Byulleten' Nauchno-tekhnicheskoy i Ekonomicheskoy Informatsii. 2016. No. 5. pp. 5–10.
9. Abhyarthana Pattanaik, Venugopal R. Analysis of reverse cationic iron ore fines flotation using RSM-D-optimal design — An approach towards sustainability. Advanced Powder Technology. 2018. Vol. 29, Iss. 12. pp. 3404–3414.

10. Zhang X., Gu X., Han Yu., Parra-Álvarez N., Claremboux V., Kawatra S. K. Flotation of iron ores: A review. Mineral Processing and Extractive Metallurgy Review. 2019. Vol. 42, Iss. 3. pp. 184–212.
11. Elves Matiolo, Hudson Jean Bianquini Couto, Neymayer Lima et al. Improving recovery of iron using column flotation of iron ore slimes. Minerals Engineering. 2020. Vol. 158. DOI: 10.1016/j.mineng.2020.106608.
12. Yin W., Wang J., Xu L. N reagents in the reverse flotation of carbonate-containing iron ores. Proc. of the 11th International congress for applied mineralogy. Cham: Springer, 2015. pp. 459–470.
13. Filippov L. O., Severov V. V., Filippova I. V. An overview of the beneficition of iron ores via reverse cationic flotation. International Journal of Mineral Processing. 2014. Vol. 127. pp. 62–69.
14. Pelevin A. E. Increasing the efficiency of iron ore dressing by separation in an alternative magnetic field. Chernye Metally. 2021. No. 5. pp. 4–9. 
15. Wen Li Jiang, Yi Min Zhang, Guang Quan Liang, Xi Wen Xia. Development and application of complex flashingfield magnetic cleaner. Advanced Materials Research. 2014. Vol. 1073–1076. pp. 2177–2188.
16. Rosario P. P. Technical and economic assessment of a non-conventional HPGR circuit. Minerals Engineering. 2017. Vol. 103–104. pp. 102–111.
17. Ismagilov R. I., Kozub A. V., Gridasov I. N., Shelepov E. V. Advanced solutions applied by JSC Andrei Varichev Mikhailovsky GOK to improve ferruginous quartzite concentration performance. Gornaya Promyshlennost'. 2020. No. 4. pp. 98–103.
18. Varichev A. V., Ugarov A. A., Efendiev N. T., Kretov S. I., et al. Innovative solutions in the production of iron ore raw materials at the Mikhailovsky GOK. Fiziko-tekhnicheskie Problemy Razrabotki Poleznykh Iskopayemykh. 2017. No. 5. pp. 141–153.
19. Opalev A. S., Khokhulya M. S., Fomin A. V., Karpov I. V. Creation of innovative technologies for production of high-quality iron concentrate production in the North West of Russia. Gornyi Zhurnal. 2019. No. 6. pp. 56–61.
20. Opalev A. S., Karpov I. V., Krivovichev S. V. Enhancing magnetite quartzite processing efficiency at Karelsky Okatysh. Gornyi Zhurnal. 2021. No. 11. pp. 66–74. 
21. Grinenko V. I., Opalev A. S., Maevsky P. V., Karpov I. V. Improvement of iron ore concentrate quality by gravity and magnetic separation at SSGPO JSC. Gornyi Zhurnal. 2021. No. 10. pp. 81–86.
22. Gzogyan S. R., Scherbakov A. V. Improving the quality of concentrates of Stoilensky GOK JSC with the use of magnetic-gravity separation. Obogashchenie Rud. 2020. No. 6. pp. 3–8.
23. Gzogyan T. N., Opalev A. S., Gzogyan S. R., Shcherbakov A.V. Application of magnetic gravity separation for obtaining high-quality concentrates from KMA ferruginous quartzites. Proc. of the XII CIS congress of the mineral processing engineers, Moscow, February 25–27, 2019. pp. 182–186.
24. Opalev A. S., Marchevskaya V. V. Influence of magnetite grain size on magnetic susceptibility of iron ore concentrates. Fiziko-tekhnicheskie Problemy Razrabotki Poleznykh Iskopayemykh. 2023. No. 1. pp. 161–167.
25. Jena S. K., Sahoo H., Rath S. S. et al. Characterization and processing of iron ore slimes for recovery of iron values. Mineral Processing and Extractive Metallurgy Review. 2015. Vol. 36. pp. 174–182.

Language of full-text русский
Полный текст статьи Получить
Назад