ArticleName |
Assessment of eddy current separator applicability for the separation of non-magnetic minerals |
Abstract |
Eddy current separation is currently used in the processing of secondary raw materials to obtain metallic copper-aluminum concentrates. Theoretically, eddy current separation may be used in the processing of non-magnetic ore minerals. A formula was derived, using the laws of electrodynamics, to calculate the Ampere force acting on particlesin a drum eddy current separator. Mathematical modeling was performed to assess the Ampere force acting on Au, Al, Cu, and Pb metal particles, as well as on chalcopyrite, pyrite, and native gold. The key parameters and operation modes affecting the processing efficiency were described for drum eddy current separators. Increased frequency and induction of the alternating magnetic field, longer particles, and higher electrical conductivity to particle density ratios tend to improve separation efficiency in an eddy current separator. It has been suggested that, at Ampere force values exceeding 20 % of the force of gravity, a particle may be recovered into the conductive product. The paper presents the results of experiments on the separation of Al, Cu, and Pb metal particles and on the recovery of pyrite particles into the conductive fraction in a drum eddy current separator. The experiments confirm the conclusions of the mathematical modeling. At an alternating magnetic field frequency of 225 Hz, Al and Cu particles with a particle length of more than 10 mm may be recovered into the conductive fraction. The use of eddy current separation for the dry separation of particles of non-magnetic ore minerals, however, does not seem very promising at the current technology level. |
References |
1. Konyaev A. Yu., Abdullaev Zh. O., Zyazev M. E., Fominykh S. I. Upgrading electrodynamic separators for waste cable recycling. Tsvetnye Metally. 2020. No. 1. pp. 7–13. 2. Smith Y. R., Nagel J. R., Rajamani R. K. Eddy current separation for recovery of non-ferrous metallic particles: A comprehensive review. Minerals Engineering. 2019. Vol. 133. pp. 149–159. 3. Dyadin B. I. Electrodynamic separation of fine particles in the pulsed traveling magnetic field. Fiziko-tekhnicheskie Problemy Razrabotki Poleznykh Iskopayemykh. 2020. No. 1. pp. 124–130. 4. Shubov L. Ya., Stavrovsky M. E., Oleinik A. V. Technology of solid household waste. Moscow: Alfa-M Publishing House, 2011. 396 p.
5. Konyaev A. Yu., Zyazev М. Е., Bagin D. N., Ilyinskaya A. O. Evaluation of energy efficiency of eddycurrent separation plants based on linear inductors at the design stage. Voprosy Elektrotekhnologii. 2022. No. 1. pp. 22–29. 6. Shubov L. Ya., Roizman V. Ya., Dudenkov S. V. Beneficiation of solid household waste. Moscow: Nedra, 1987. 238 p. 7. Zyazev M. E., Konyaev A. Yu. Linear induction machines with modular design of linear inductors for industrial technology. Promyshlennaya Energetika. 2023. No. 2. pp. 2–8. 8. Konyaev A. Yu., Bagin D. N., Lapteva E. O. Modeling the motion of conducting particles in the active zone of a linear inductor of eddy-current separator. Vestnik Permskogo Natsionalnogo Issledovatelskogo Politekhnicheskogo Universiteta. Elektrotekhnika, Informatsionnye Tekhnologii, Sistemy Upravleniya. 2020. No. 36. pp. 63–79. 9. Konyaev A. Yu., Abdullaev Zh. O., Gaponenko E. V., Zyazev M. E. Methods of increasing efficiency of electrodynamic separators for processing of solid metal-containing wastes. Ekologiya Promyshlennogo Proizvodstva. 2019. No. 1. pp. 2–6. 10. Yuan Yi, Cao Bin, Zhang Xuemei, Feng Lei, Wang Tiansheng, Wang Qiang. Effects of material temperature on the separation efficiency in a rotary-drum type eddy current separator. Powder Technology. 2022. Vol. 404. DOI: 10.1016/j.powtec.2022.117449 11. Pelevin A. E., Sytykh N. A., Cherepanov D. V. Particle size impact on dry magnetic separation efficiency. Gornyi Informatsionno-analiticheskiy Byulleten'. 2021. No. 11-1. pp. 293–305. 12. Pelevin A. E. Weakly magnetic minerals processing in roller separators with a system of permanent magnets. Gornyi Informatsionno-analiticheskiy Byulleten'. 2022. No. 11-1. pp. 155–168. 13. Pelevin A. E., Sytykh N. A. Increased magnetic field induction separators in titanium magnetite ore processing. Obogashchenie Rud. 2020. No. 2. pp. 15–20. 14. Pelevin A. E. Iron ore beneficiation technologies in Russia and ways to improve their efficiency. Zapiski Gornogo Instituta. 2022. Vol. 256. pp. 579–592. 15. Korchevenkov S. A., Aleksandrova T. N. Preparation of standard iron concentrates from non-traditional forms of raw material using a pulsed magnetic field. Metallurgist. 2017. Vol. 61, No. 5–6. pp. 375–381. 16. Jian-feng Zhou, Song Zhang, Feng Tian, Chun-lei Shao. Simulation of oscillation of magnetic particles in 3D microchannel flow subjected to alternating gradient magnetic field. Journal of Magnetism and Magnetic Materials. 2019. Vol. 473. pp. 32–41. 17. Veerendra Singh, Samik Nag, N Gurulaxmi Srikakulapu, Asim K Mukherjee. Development of a novel magnetic separator for segregation of minerals of dissimilar electromagnetic properties. Minerals Engineering. 2023. Vol. 193. DOI: 10.1016/j.mineng.2023.108009 18. Pelevin A. E. Improving magnetite concentrate quality in an alternating magnetic field. Obogashchenie Rud. 2019. No. 6. pp. 19–24. 19. Pelevin A. E. Increasing the efficiency of iron ore dressing by separation in an alternative magnetic field. Chernye Metally. 2021. No. 5. pp. 4–9. 20. Pelevin A. E. Effects of magnetic flocculation on ironbearing ore concentration. Obogashchenie Rud. 2021. No. 4. pp. 15–20. 21. Youdong Jia, Jianxiong Liu, Hongshen Zhang, Jiaxing Zeng, Mingjiang Jiang. A Review on application of eddy current separation for the recycling of scraped vehicles. IWAMA 2021: Advanced manufacturing and automation XI. Singapore: Springer, 2022. pp. 141–147. 22. Zyazev M. E., Gizzatullin E. V., Konyaev A. Yu. Modeling and research into motion of conducting particles under separation in the traveling magnetic field. Voprosy Elektrotekhnologii. 2021. No. 3. pp. 5–14. 23. Ampere A. M. Electrodynamics: Selected works. Moscow: Lenand, 2015. 496 p. 24. Landau L. D., Lifshits E. M. Theoretical physics in 10 volumes. Vol. 8. Electrodynamics of continuous media. Moscow: Fizmatlit, 2016. 656 p. 25. Faddeev D. K. Technical electrodynamics. St. Petersburg: Lan', 2016. 432 p. 26. Dergunova E. A., Isaenkova M. G., Potanina L. V. Physical materials science. Vol. 8. Moscow: MEPhI, 2021. 228 p. 27. Livshits B. G., Kraposhin V. S., Linetsky Ya. L. Physical properties of metals and alloys. Moscow: Metallurgiya, 1980. 320 p. 28. Doroshenko M. V., Bashlykova T. V. Technological properties of minerals. Moscow: Teploenergetik, 2007. 296 p. 29. Vaisberg L. A., Kononov O. V., Ustinov I. D. Fundamentals of geometallurgy. St. Petersburg: Russkaya Kollektsiya, 2020. 376 p. 30. Cao Bin, Yuan Yi, Shan Zhicheng, Wang Qiang, Amor Abdelkader, Ali Reza Kamali, Diogo Montalvão. Effects of particle size on the separation efficiency in a rotary-drum eddy current separator. Powder Technology. 2022. Vol. 410. DOI: 10.1016/j.powtec.2022.117870 31. Zhe Huang, Jie Zhu, Xiaowei Wu, Ruijun Qiu, Zhenming Xu, Jujun Ruan. Eddy current separation can be used in separation of non-ferrous particles from crushed waste printed circuit boards. Journal of Cleaner Production. 2021. Vol. 312. 32. Konyaev A. Yu., Bagin D. N., Bektabanov Ch. A., Krylov G. A. Effects of the size of conductive particles on induction sorting efficiency in the traveling magnetic field. Voprosy Elektrotekhnologii. 2022. No. 3. pp. 5–12. 33. Urvantsev A. I. Energy separation of mineral raw materials. Ekaterinburg: Fort Dialog-Iset', 2015. 224 p. 34. Urvantsev A. I., Shikhov N. V., Zaitsev G. V. Research results and practice of mineral raw material beneficiation by electric separation. Izvestiya Vysshikh Uchebnykh Zavedeniy. Gornyi Zhurnal. 2005. No. 5. pp. 37–51. 35. Yan X., Wang H., Peng Z., Hao J., Zhang G., Xie W., He Y. Triboelectric properties of ilmenite and quartz minerals and investigation of triboelectric separation of ilmenite ore. International Journal of Mining Science and Technology. 2018. Vol. 28, Iss. 2. pp. 223–230. |