Журналы →  Черные металлы →  2023 →  №8 →  Назад

НОВЫЕ РАЗРАБОТКИ РХТУ ИМ. Д. И. МЕНДЕЛЕЕВА ДЛЯ МЕТАЛЛУРГИИ
40 лет кафедре промышленной экологии РХТУ им. Д. И. Менделеева
Название Использование металлургических шлаков в производстве строительных материалов как направление формирования экономики замкнутого цикла
DOI 10.17580/chm.2023.08.12
Автор И. О. Тихонова, Е. Н. Потапова, А. А. Волосатова, Т.В. Гусева
Информация об авторе

Российский химико-технологический университет имени Д. И. Менделеева, Москва, Россия:

И. О. Тихонова, доцент кафедры промышленной экологии, канд. техн. наук, эл. почта: tikhonova.i.o@muctr.ru
Е. Н. Потапова, профессор кафедры химической технологии композиционных и вяжущих материалов, докт. техн. наук

 

Научно-исследовательский институт «Центр экологической промышленной политики», Москва, Россия:
А. А. Волосатова, заместитель директора
Т. В. Гусева, заместитель директора, докт. техн. наук, профессор

Реферат

Представлены результаты анализа подходов к вовлечению металлургических шлаков в производство строительных материалов. Повышение ресурсной эффективности производства и формирование экономики замкнутого цикла отвечают национальным целям развития РФ и одновременно вносят вклад в достижение целей устойчивого развития. Отмечено, что концепция промышленно-экологических систем (промышленных симбиозов) получила развитие в российской школе промышленной экологии в середине прошлого века. С научной точки зрения степень приближения такой системы к природной определяется долей вторичных ресурсов, используемых в производстве металлов, и уровнем вовлечения вторичных ресурсов, образовавшихся в металлургическом производстве, в технологические процессы других предприятий — членов промышленного симбиоза. Рассмотрен практический пример промышленно-экологической системы г. Новотроицка, включающей предприятие черной металлургии, цементный завод и предприятие по переработке шлака. Приведены количественные характеристики повышения ресурсной эффективности производства, минимизации негативного воздействия на окружающую среду и сокращения углеродоемкости продукции. Установлено, что опыт данного промышленного симбиоза целесообразно распространять в регионах, где образуется (или накоплено) значительное количество металлургических шлаков, и доступны также основные сырьевые компоненты, необходимые для производства цемента. Отмечено, что проекты создания промышленных симбиозов, направленных на вовлечение металлургических шлаков в производство строительных материалов и формирование элементов экономики замкнутого цикла, отвечают критериям устойчивых («зеленых») проектов, утвержденным в РФ, и могут быть реализованы при поддержке государства или банковского сектора с использованием финансовых инструментов устойчивого развития.
Исследования проведены с использованием оборудования Центра коллективного пользования имени Д. И. Менделеева в рамках проекта № 075-15-2021-688.

Ключевые слова Наилучшие доступные технологии, металлургические шлаки, цемент, бетон, экономика замкнутого цикла, проекты устойчивого развития
Библиографический список

1. Shinkevich M. V., Yakunina R. P., Bashkirtseva S. A. Circular economy – a new paradigm in the management of mesosystems. Vestnik Belgorodskogo universiteta kooperatsii, ekonomiki i prava. 2022. No. 3 (94). pp. 64–72.
2. Korhonen J., Honkasalo A., Seppälä J. Circular economy: The concept and its limitations. Ecological Economics. 2018. Vol. 143. pp. 37–46.
3. Manturov D. V. Sustainable economic growth: aspects of harmonization of industrial and environmental policy in Russia. Nauchno-tekhnicheskie vedomosti SPbGTU. Ekonomicheskie nauki. 2018. Vol. 11. No. 4. pp. 132–140.
4. Skobelev D. O. Ecological industrial policy; main directions and principles of formation in Russia. Vestnik Moskovskogo universiteta. Seriya 6. Ekonomika. 2019. No. 4. pp. 78–94.
5. Skobelev D. O., Fedoseev S. V. The policy of increasing resource efficiency and the formation of a circular economy. Kompetentnost. 2021. No. 3. pp. 5–13.
6. Romanova O. A. Industrial policy as a modern tool for the formation of an environmentally and socially friendly space. Izvestiya UGTU. 2018. Iss. 2 (50). pp. 135–141.
7. Skobelev D. O. Resource efficiency of the economy: aspects of strategic planning. Menedzhment v Rossii i za rubezhom. 2020. No. 4. pp. 3–13.
8. A list of instructions based on the results of the audit of implementation of provisions of the legislation of the Russian Federation on the handling production and consumption waste classified as hazard class III. Pr-1489, item 1b-1 dated 09.16.2020.
9. Order of the Ministry of Industry and Trade of Russia dated 05.05.2014 No. 839 “On Approval of the Strategy for Development of the Ferrous Metallurgy of Russia for 2014–2020 and for the Perspective until 2030 and the Strategy for the Development of the Nonferrous Metallurgy of Russia for 2014–2020 and for the Perspective until 2030”.
10. Decree of the Government of the Russian Federation dated 06.06.2020 No. 1512-r “On approval of the Consolidated Strategy for Development of the Manufacturing Industry of the Russian Federation until 2024 and for the period until 2035”.
11. I. P. Bardin and metallurgical science. Edited by А. G. Shalimova. Moscow : Metallurgizdat, 2003. 129 p.
12. Laskorin B. N., Gromov B. V., Tsygankov A. P., Senin V. N. Waste-free technology in industry. Moscow : Stroyizdat, 1986. 158 p.
13. Yagodin G. A., Tretyakova L. G. Chemistry and chemical technology in solving global problems. Moscow : Khimiya, 1988. 174 p.
14. Rodionov A. I, Klushin V. N, Sister V. G Technological processes of ecological safety. Fundamentals of environmental science. Kaluga : Izdatelstvo N. Bochkarevoy, 2000. 800 p.
15. Zaitsev V. A. Industrial ecology. Moscow : Laboratoriya znaniy, 2012. 512 p.
16. O’Rourke D., Connelly L., Koshland C. Industrial ecology: A critical review. International Journal of Environment and Pollution. 1996. Vol. 6. pp. 89–112.
17. Frosch R. A., Gallopoulos N. E. Strategies for manufacturing. Scientific American. 1989. Vol. 261. pp. 144–152.
18. Adno Yu. L. World ferrous metallurgy: crisis around the turn of a new decade. Chernye Metally. 2020. No. 7. pp. 51–58.
19. Frosch R. A, Clark W. C., Crawford J., Sagar A. et al. The industrial ecology of metals: A reconnaissance. Philosophical Transactions of the Royal Society of London. 1997. Vol. 355 (1728). pp. 1335–1347.
20. Branca T., Colla V., Algermissen D. et al. Reuse and recycling of by-products in the steel sector: Recent achievements paving the way to circular economy and industrial symbiosis in Europe. Metals. 2020. Vol. 10, Iss. 3. 345. DOI: 10.3390/met10030345
21. Ardelean E., Socalici A., Lupu O. et al. Recovery of waste with a high iron content in the context of the circular economy. Materials. 2022. Vol. 15, Iss. 14. 4995. DOI: 10.3390/ma15144995
22. Roginko S. A., Shevelev L. N. The Paris Agreement: New Challenges for Russian Iron & Steel Industry. Chernye Metally. 2019. No. 11. pp. 59–66.
23. Wesseling J., Lechtenböhmer S., Åhman M. et al. The transition of energy intensive processing industries towards deep decarbonization: characteristics and implications for future research. Renewable and Sustainable Energy Reviews. 2017. Vol. 79. pp. 1303–1313.
24. Volosatova A. A., Uchenov A. A., Skobelev D. O. Formation of the concept of implementing the principles of green economy in the Eurasian Economic Union: the role of harmonization of approaches to improving resource efficiency. Vestnik evraziyskoy nauki. 2022. Vol. 14. No. 4. 14. Available at: https://esj.today/23ecvn422.html
25. Naqi A., Jang J. G. Recent progress in green cement technology utilizing low-carbon emission fuels and raw materials: A review. Sustainability. 2019. Vol. 11. 537. DOI: 10.3390/su11020537.
26. Dobrokhotova M. V., Kuroshev I. S., Ezhova O. S. Production of iron and steel. Technology Encyclopedia 2.0: Metal Production. Moscow, SPb. : Renome, 2022. pp. 279–375.
27. Information and technical guide on the best available technologies ITS 25–2021 "Extraction and enrichment of iron ores".
28. Information and technical guide on the best available technologies ITS 26–2022 "Production of iron, steel and ferroalloys".
29. Leontiev L. I., Sheshukov O. Yu., Tsepelev V. S., Mikheenkov M. A., Nekrasov I. V., Egiazaryan D. K. Technological features of processing steel-melting slags into building materials and products. Stroitelnye materialy. 2014. No. 10. pp. 70–73.
30. Smirnov L. A., Sorokin Yu. V. et al. Processing of industrial waste. Ekaterinburg : UIPTs Ltd., 2012. 602 p.
31. Sukharev M. F. Production of heat-insulating materials and products. Moscow : Vysshaya shkola, 1973. 304 pp.
32. Beersaerts G., Hertel T., Lucas S., Pontikes Y. Promoting the use of Fe-rich slag in construction: development of a hybrid binder for 3D printing. Cement and Concrete Composites. 2023. Vol. 138. 104959. DOI: 10.1016/j.cemconcomp.2023.104959
33. Pai-Haung Sh., Zong-Zheng Wu, Hung-Lung Ch. Characteristics of bricks made from waste steel slag. Waste Management. 2004. Vol. 24, Iss. 10. pp. 1043–1047.
34. Wenxing Sh., Zhiwei P., Yawen H. et al. Production of glass-ceramics from metallurgical slags. Journal of Cleaner Production. 2021. Vol. 317. 128220. DOI: 10.1016/j.jclepro.2021.128220
35. Beall G. H. Milestones in glass-ceramics: a personal perspective. International Journal of Applied Glass Science. 2014. Vol. 5. pp. 93–103.
36. Information and technical guide on the best available technologies ITS 6–2022 "Cement production". Available at: http://burondt.ru/NDT/NDTDocsDetail.php?UrlId=1843&etkstructure_id=1872 (accessed: 06.03.2023).
37. Mishra U. C., Sarsaiya S., Gupta A. A systematic review on the impact of cement industries on the natural environment. Environmental Science and Pollution Research. 2022. Vol. 29. pp. 18440–18451.
38. Tikhonova I., Guseva T., Shchelchkov K., Potapova E., Averochkin E. Best available techniques, general binding rules and decarbonisation of the construction materials industry. Proceedings of the 21st International Multidisciplinary Scientific GeoConference SGEM 2021. 2021. Iss. 5.1. pp. 51–58. DOI: 10.5593/sgem2021/5.1/s20.007
39. Potapova E. N., Guseva T. V., Tikhonova I. O. et al. Cement production: aspects of increasing resource efficiency and reducing the negative impact on the environment. Stroitelnye materialy. 2020. Vol. 784. No. 9. pp. 15–20.
40. Decree of the Government of the Russian Federation dated 09.21. 2021 No. 1587 “On Approval of criteria for sustainable (including green) development projects in the Russian Federation and requirements for the system for verification of sustainable (including green) development projects in the Russian Federation”.
41. Dobrokhotova M. V., Matushansky A. V. Application of the concept of the best available technologies for the technological transformation of industry in the conditions of energy transition. Ekonomika ustoychivogo razvitiya. 2022. No. 2 (50). pp. 63–68.

Language of full-text русский
Полный текст статьи Получить
Назад