Название |
New slime depressant for potash ore flotation |
Информация об авторе |
VNII Galurgii JSC (Saint Petersburg, Russia):
Konobeevskikh A. V., Head of Laboratory, Aleksey.Konobeevskih@uralkali.com Titkov S. N., Director of Technological Research Section, Candidate of Engineering Sciences, Stanislav.Titkov@uralkali.com Teleshev D. K., Senior Researcher, Dmitriy.Teleshev@uralkali.com
PJSC Uralkali (Berezniki, Russia):
Aliferova S. N., Deputy Technical Director, Candidate of Engineering Sciences, Svetlana.Aliferova@uralkali.com |
Реферат |
The main difficulties in the flotation of water-soluble salts include the presence of silicate-carbonate and sulphate easily slime-generating water-insoluble impurities. The slime formed in ore grinding has a high sorption capacity and therefore reduces sylvite floatability by actively sorbing the cationic collector (primary aliphatic amines). Slime contents as low as 0.2–0.4 wt% in sylvite flotation feed cause a significant deterioration in flotation performance and high cationic collector consumption. In order to eliminate the negative impact of insoluble impurities on the sylvite flotation process, the ore is preliminarily deslimed by the centrifugal gravity concentration or flotation methods, or a combination of both. With an aim to suppress the effects of the residual slime amounts, the sylvite flotation feed is then treated with an organic slime depressant. Various anionic polymers and oligomers are used as such a depressant, namely: starch, cellulose ethers, guar, tannides, and urea-formaldehyde resins (UFR). This article presents the performance data for using UFRs of various compositions. It provides the results of relevant laboratory and industrial tests with potash ore flotation using urea-formaldehyde resins of various compositions as slime depressants. Oligomer K-6 slime depressant has been developed and adopted for industrial use. It has a free formaldehyde content of not more than 0.5 % and ensures efficient sylvite flotation. Oligomer K-6 has been introduced for industrial use at the flotation plants of PJSC Uralkali. |
Библиографический список |
1. Alekseeva E. I. Investigation of the effectiveness of organic depressors during KCl flotation in the presence of clay-carbonate impurities of various composition. Actual issues of extraction and processing of natural salts: a collection of scientific papers of CJSC VNII Galurgii. Iss. 75. Saint Petersburg, 2006. pp. 140–148. 2. Teterina N. N., Sabirov R. Kh., Skvirsky L. Ya., Kirichenko L. N. Technology of flotation concentration of potash ores. Perm: Solikamsk Printing House, 2002. 484 p. 3. Zhelnin A. A. Theoretical foundations and practice of potash salt flotation. Leningrad: Khimiya, 1973. 184 p. 4. Pat. US62277A (US2088325A) United States. 5. Rogers J. Flotation of soluble salts. Bulletin — Institution of Mining and Metallurgy. 1957. Vol. 607. pp. 439–452. 6. Aleksandrovich Kh. M. Fundamentals of the use of reagents in the flotation of potash ores. Minsk: Nauka i Tekhnika, 1973. 293 p. 7. Li D., Wang X., Cheng F., Li E. Removal of insoluble slimes from potash ore using flotation. Tenside Surfactants Detergents. 2017. Vol. 54, Iss. 6. pp. 479–485. 8. Cao Q. B., Hao Du H., Miller J. D., Wang X. M., Cheng F. Q. Surface chemistry features in the flotation of KCl. Minerals Engineering. 2010. Vol. 23. pp. 365–373. 9. Aia Zh., Li Sh., Zhaoa Yu., Yia H., Chena L., Chena P., Song Sh. Effect of magnesium ion on sylvite flotation: An experiment and molecular dynamic simulation study. Chemical Physics Letters. 2020. Vol. 752. DOI: 10.1016/j.cplett.2020.137586 10. Shang K., Xie W., He D., Benzaazoua M., Chen F., Aleksandrova T. N. Study on the foam behavior of amine reagents adsorbed at gas-liquid and gas-liquid-solid interfaces. Physicochemical Problems of Mineral Processing. 2021. Vol. 57, Iss. 1. pp. 192–205. 11. Tao X., Liu Y., Jiang H., Chen R. Microbubble generation with shear flow on large-area membrane for fine particle flotation. Chemical Engineering and Processing – Process Intensification. 2019. Vol. 145. DOI: 10.1016/j.cep.2019.107671 12. Darabi H., Koleini S. M. J., Deglon D., Rezai B., Abdollahy M. Investigation of bubble-particle attachment, detachment and collection efficiencies in a mechanical flotation cell. Powder Technology. 2020. Vol. 375. pp. 109–123. 13. Titkov S., Panteleeva N., Chistyakov A., Pimkina L., Mikhaylova I. Studies of surface and sorption behavior of saline and clay-carbonate minerals in electrolytes. Developments in Mineral Processing. 2000. Vol. 13. pp. C8b-36–C8b-42. 14. Vlasov V. P., Muslimov A. E., Kanevsky V. M. About adsorption of water on surface (001) of NaCl. Poverkhnost'. Rentgenovskie, Sinkhrotronnye i Neytronnye Issledovaniya. 2020. No. 10. pp. 55–58. 15. Burov V. E., Gallyamov A. N., Fedotova O. A., Poilov V. Z. Effect of ultrasonic processing on the amine hydrochetic solution a foaming ability. Vestnik Permskogo Natsionalnogo Issledovatelskogo Politekhnicheskogo Universiteta. Khimicheskaya Tekhnologiya i Biotekhnologiya. 2020. No. 4. pp. 133–147. 16. Kibanova M. S., Lanovetsky S. V. Study of the influence of sludge depressant reagents on the technological parameters of the main sylvin flotation of potassium chloride. Molodezhnaya Nauka v Razvitii Regionov. 2021. Vol. 1. pp. 301–303. 17. Podtynova A. S., Cherepanova M. V., Poilov V. Z. Analysis methods of the residual amine content on the surface of flotation potassium chloride. Khimiya. Ekologiya. Urbanistika. 2021. Vol. 4. pp. 38–42. 18. Filippova I. V., Filippov L. O., Lyubimova T. P., Fattalov O. O. Intensification of the process of flotation separation of potassium salts using external influences. Problems and prospects of effective processing of mineral raw materials in the 21st century (Plaksinsky Readings–2019). Irkutsk: Reprocenter A1, 2019. pp. 195–198. 19. Alekseeva E. I., Titkov S. N., Panteleeva N. N., Konoplev E. V. Improving the technology of flotation desliming of high-clay potash ores. Obogashchenie Rud. 2007. No. 2. pp. 10–14. 20. Titkov S. N., Panteleeva N. N., Gurkova T. M. Physico-chemical regularities of flotation separation of salts. Actual issues of extraction and processing of natural salts. Proceedings of VNIIG. Vol. 2. Saint Petersburg: LIK, 2001. pp. 33–50. 21. Pat. RU2165798 Russian Federation. 22. TU 2223-024-00203803-2000. Carbamide-formaldehyde resin, mark KS-MF. 23. Pat. RU2745890C1 Russian Federation. 24. TU 20.16.55-1506-55778270-2017. Oligomeric depressor K-6 for flotation. |