Реферат |
Проведен анализ приоритетных работ в области нанотехнологий и ультрадисперсных веществ профессора Санкт-Петербургского горного института П. П. Веймарна (1879–1935), а также современных направлений нанотехнологических исследований Горного университета и 20-летней деятельности Международного симпозиума «Нанофизика и наноматериалы». Впервые рассмотрены публикации П. П. Веймарна, посвященные высокодисперсным цветным металлам (Cd, Ag, Cu, Te, Se) как объектам, которые иллюстрируют основные законы дисперсоидологии — науки «о свойствах поверхностей и процессах на них совершающихся». Обращено внимание на то, какую важную роль, по Веймарну, для формирования поверхностных свойств металла играет дисперсионная среда, в которой получаются частицы металла. Показано, какие новые подтверждения это научное положение находит в исследованиях XXI в., в частности при получении наноструктурированных металлических продуктов методом твердотельного гидридного синтеза. Выполнен анализ трех основных научных направлений Горного университета в области нанотехнологии и наноматериалов с точки зрения актуальности, эффективности реализованных проектов и полученных достижений мирового уровня. Диссертации, подготовленные по всем трем направлениям, сообщение о научном открытии прошли апробацию на Международном симпозиуме «Нанофизика и наноматериалы» в Санкт-Петербургском горном университете. Обосновано, что этот симпозиум является хорошей площадкой для обмена инновационными знаниями в области наноматериалов, а также способствует усилению научных контактов с русскоязычными зарубежными специалистами и сохранению памяти о выдающихся ученых в области нанотехнологий, изучению и развитию их творческого наследия. |
Библиографический список |
1. Margolin V. I., Zhabrev V. A., Lukianov G. N., Tupik V. A. Introduction to nanotechnology. St Petersburg : Lan, 2012. 464 p. 2. Kuznetsov N. T., Novotortsev V. M., Zhabrev V. A., Margolin V. I. Fundamentals of nanotechnology. Moscow : Izdatelstvo “Binom”, 2014. 397 p. 3. Petr P. von Weymarn. Great Russian Encyclopedia. Ed. by S. L. Kravets. Available at: bigenc.ru/c/veimarn-piotr-petrovich-fon-b63837 (Published: 5 April 2023). 4. Syrkov A. G. On the priority of Saint Petersburg Mining University in the field of science about nanotechnology and nanomaterials. Journal of Mining Institute. 2016. Vol. 221. pp. 730–736. 5. Syrkov A. G., Pleskunov I. V. The study of low-dimensional systems in Saint-Petersburg Mining University: from P. P. Weimarn to the present days. Applied Aspects of Nano-Physics and Nano-engineering. New York : Nova Science Publishers, Inc., 2019. pp. 139–146. 6. Pleskunov I. V., Syrkov A. G. Development of research of low-dimension metal-containing systems from P. P. Weimarn to our days. Journal of Mining Institute. 2018. Vol. 231. pp. 287–291. 7. Weymarn P. P., Kagan I. B. A simple general method to obtain a body in the state of solid colloidal solutions of any dispersion starting from the molecular one. Journal of Mining Institute. 1910. Vol. 2. pp. 398–400. 8. Weymarn P. P. A new classification of the states of matter and the basic law of dispersoidology. Journal of Mining Institute. 1912. Vol. 4. pp. 128–143. 9. Weymarn P. P. A relationship between the dispersion degree of a solid crystal body and its melting point. Journal of Mining Institute. 1911. Vol. 3. pp. 100–102. 10. Weymarn P. P. On the electric conductivity of metals and their alloys from the points of view of dispersoid chemistry. Journal of Mining Institute. 1911. Vol. 3. pp. 349–353. 11. Kumar A., Prajapati C. S., Sahay P. P. Modification in the micro-structural and electrochromic properties of spray-pyrolysed WO3 thin films upon Mo doping. Journal of Sol-Gel Science and Technology. 2019. Vol. 90, No. 2. pp. 281–290. 12. Belousov A. L., Patrusheva T. N. Electrochromic oxide materials. Journal of Siberian Federal University. Engineering & Technologies. 2014. Vol. 6, No. 7. pp. 698–710. 13. Zhang H., Wang Y., Zhu X., Li Y. Bilayer Au nanoparticle-decorated WO3 porous thin films: on chip fabrication and enhanced NO2 gas sensing performances with high selectivity. Sensors and Actuators B Chemical. 2019. Vol. 280. pp. 192–200. 14. Khisamutdinova N. V. Chemist Petr P. von Weymarn in Russia and Japan. Vestnik Dalnevostochnogo otdeleniya Rossiyskoy Akademii nauk. 2011. No. 5. pp. 134–141. 15. Filatov V. V. Von Weymarn – the first rector of the Ural Mining Institute. Uralskiy geologicheskiy zhurnal. 2000. No. 2. pp. 167–194. 16. Volkov V. A., Kulikova M. V. Russian academics. 18th – early 20th centuries. Biological and biomedical sciences: A biographical dictionary. St Petersburg : Izdatelstvo Russkogo khristianskogo gumanitarnogo instituta, 2003. 544 p. 17. Kashima K. An eminent Russian chemist. Industrial and Engineering Chemist. 1924. Vol. 16, No. 5. pp. 540–541. 18. P. P. von Weimarn, 1879–1935. Kolloid – Zeitschrift. 1936. Bd. 74, No. 1. 19. Capillary chemistry. Ed. by K. Tamaru. Translated from Japanese by A. V. Khachoyan. Moscow : Mir, 1983. 20. Zhabrev V. A., Kalinnikov V. T., Margolin V. I., Nikolaev A. N. et al. The physico-chemical processes behind synthesis of nanosized items. St. Petersburg : Izdatelstvo Elmor, 2012. 328 p. 21. Shorin A. G. An article about Petr P. von Weymarn for the Russian Wikipedia. Izvestiya Uralskogo gosudarstvennogo gornogo universiteta. 2016. No. 2. pp. 97–100. 22. Weimarn P. P. von Die Theorie der Herstellung und der Stabilitat Kolloider Losunger. Kollidchemische Beihefte. 1910. Bd. 1. ss. 396–422. 23. Weymarn P. P. The crystallization method for obtaining disperse systems and factors defining their stability in relation to the theory of solids dissolved in liquids. Journal of Mining Institute. 1912. Vol. 4. pp. 115–127. 24. Weymarn P. P. On the problem of the nature of disperse systems. Journal of Mining Institute. 1911. Vol. 3. pp. 136–140. 25. Syrkov A. G., Prokopchuk N. R. Dispersed iron obtaining by the method of solid state hydride synthesis and the problem of hydrophobicity of metal. CIS Iron and Steel Review. 2021. Vol. 21. pp. 16–22. 26. Pak V. N., Golov O. V., Grabov V. M. et al. Porous glass as a synthesis reactor for bismuth nanoparticles. Russian Journal of General Chemistry. 2015. Vol. 84, No. 10. pp. 1600–1604. 27. Pak V. N., Golov O. V., Formus D. V. Evolution of copper (II) oxide nanoparticles in porous glass matrix. Smart Nanocomposites. 2016. Vol. 7, No. 1. pp. 27–31. 28. Lutskiy D. S., Ignatovich A. S. Understanding the hydrometallurgical recovery of copper and rhenium when processing off-grade copper concentrates. Journal of Mining Institute. 2021. Vol. 251. P. 723–729. DOI: 10.31897/PMI.2021.5.11 29. Bazhin V. Y., Aryshenskii E., Hirsch J., Kawalla R. et al. Impact of Zener-Hollomon parameter on substructure and texture evolution during thermomechanical treatment of iron-containing wrought aluminium alloys. Transactions of Nonferrous Metals Society of China. 2019. Vol. 29, Iss. 5. pp. 893–906. 30. Syrkov A. G., Yachmenova L. A. Features of obtaining metallurgical products in the solid-state hydride synthesis conditions. Journal of Mining Institute. 2022. Vol. 256. pp. 651–662. 31. Popova A. N., Klimenkov B. D., Grabovskiy A. Yu. Scientific school for plasma nanotechnology and energy at the Mining University. Izvestiya VUZ. Applied Nonlinear Dynamics. 2021. Vol. 29, No. 2. pp. 317–336. 32. Litvinenko V. S., Tsvetkov P. S., Dvoynikov M. V., Buslaev G. V. Barriers to implementation of hydrogen initiatives in the context of global energy sustainable development. Journal of Mining Institute. 2020. Vol. 244. pp. 428–438. 33. Baake E., Shpenst V. A. Resent scientific research on electro-thermal metallurgical processes. Journal of Mining Institute. 2019. Vol. 240. pp. 660–668. 34. Nedosekin A. O., Reyshakhrit E. I., Kozlovskiy A. N. A strategic approach to assessing the economic resilience of Russia’s mineral deposits. Journal of Mining Institute. 2019. Vol. 237. pp. 354–360. 35. Brichkin V. N., Vorobiev A. G., Bazhin V. Y. Mining Institute’s metallurgists: a tradition serving the country, science and production industry. Tsvetnye Metally. 2020. No. 10. pp. 4–13. 36. Sosnov E. A., Malkov A. A., Malygin A. A. The nanotechnology of monomolecular layering in the production of inorganic and hybrid materials for different applications (Review). I Molecular layering method: How it originated and evolved. Zhurnal prikladnoy khimii. 2021. No. 8. pp. 967–986. 37. Smerdov R. S., Mustafaev A. S., Spivak Yu. M. et al. Composite nanostructured materials for plasma energetic systems. Applied Aspects of Nano-Physics and Nano-Engineering. New York : Nova Science Publishers, Inc., 2019. pp. 229–236. 38. Syrkov A. G., Kushchenko A. N., Silivanov M. O., Taraban V. V. Nanostructured regulation of the surface properties and hydrophobicity of nickel and iron by solid-state and modifying methods. Tsvetnye Metally. 2022. No. 5. pp. 54–59. 39. Silivanov M. O., Vinogradova A. A. Research of the parameters of boundary friction of tribosystems in the introduction of surface modified Al-samples. Journal of Physics: Conference series. 2019. Vol. 1384, No. 1. 12067-4. 40. Popova A. N., Kison V. E., Sukhomlinov V. S., Mustafaev A. S. Development of new plasma technology method in synthetic materials. Materials Science Forum. 2021. Vol. 1040. pp. 87–93. 41. Pryakhin E., Malyushin I. Research of nanostructuring of metal surface by the Nanobar code processing. New Materials Preparation, Properties and Applications in the Aspect of Nanotechnology. New York : Nova Science Publishers, Inc., 2020. pp. 197–204. 42. Ermakov S. B., Vologzhanina S. A., Ermakov B. S. Features of obtaining Ni – Cr – Fe powders by plasma Atomization. Materials Science Forum. 2021. Vol. 1040. pp. 1–7. 43. Khalimonenko A. D., Zbotnikov E. G., Gorshkov L. V., Popov M. A. Influence of the microstructure of cutting ceramics on the efficiency of the machining process. Materials Science Forum. 2021. Vol. 1040. pp. 21–27. 44. Ganzulenko O. Y., Petkova A. P. Simulation and approbation of the marking laser process on metal materials. Journal of Physics: Conference series. 2021. Vol. 1753, Iss. 1. 012016. 45. Pryakhin E. I., Ligachev A. E., Kolobov Y. R. et al. Assessment of the thermal effect on the surface of metal structural materials on the stability of laser – induced code readability. Materials Science Forum. 2021. Vol. 1040. pp. 47–54. 46. Goncharova M. V., Mikhailova M. S. Two dynasties of mining engineers: the Beloglazaovs and the Thiemes – two branches of the same family – for a century and a half serving the Mining University. Tsvetnye Metally. 2023. No. 7. P. 90–96. 47. Gerasimova I. G., Oblova I. S. Scientific heritage of professor G. V. Illuvieva. Obogashchenie Rud. 2022. No. 4. P. 52–56. 48. Beloglazov I., Krylov K. An Interval-simplex approach to determine technological parameters from experimental data. Mathematics. 2022. No. 10. 2959. DOI: 10.3390/math10162959 49. Syrkov A. G. The Nanophysics and Nanomaterials International Conference devoted to V. B. Aleskovskiy’s 105th birthday. Condensed Matter and Interphases. 2018. Vol. 20, No. 1. pp. 165–173. 50. Sena L. S., Sena S. S., Sena Kh. S. et al. L. A. Sena: A path to discovery. Proceedings of the Nanophysics and Nanomaterials International Conference. St Petersburg : Sankt-Peterburgskiy gornyi universitet, 2022. pp. 255–271. 51. New Materials. Preparation, properties and applications in the aspect of nanotechnology. New York : Nova Science Publishers, Inc., 2020. 249 p. 52. Applied aspects of nano-physics and nano-engineering. New York : Nova Science Publishers, Inc., 2019. 308 p. |