Журналы →  Цветные металлы →  2023 →  №8 →  Назад

К 250-летию Санкт-Петербургского горного университета императрицы Екатерины II и 20-летию Международного симпозиума «Нанофизика и наноматериалы»
Материаловедение наноструктурированных металлов
Название Оценка степени металлического состояния и перспективных свойств кристаллического PbSb2Te4, полученного методом Чохральского
DOI 10.17580/tsm.2023.08.12
Автор Немов С. А., Поволоцкий А. В., Андреева В. Д., Кущенко А. Н., Мухараева И. Ю.
Информация об авторе

Санкт-Петербургский политехнический университет Петра Великого, Санкт-Петербург, Россия1 ; Санкт-Петербургский государственный электротехнический университет «ЛЭТИ» имени В. И. Ульянова-Ленина, Санкт-Петербург, Россия2:

С. А. Немов, профессор Высшей школы физики и технологий материалов1, профессор кафедры фотоники2, докт. физ.-мат. наук, эл. почта: nemov_s@mail.ru

 

 Санкт-Петербургский политехнический университет Петра Великого, Санкт-Петербург, Россия:

В. Д. Андреева, доцент Высшей школы физики и технологий материалов, канд. техн. наук, эл. почта: andreeva_vd@spbstu.ru

 

Санкт-Петербургский государственный университет, Санкт-Петербург, Россия:
А. В. Поволоцкий, заместитель директора ресурсного центра, канд. физ-мат наук, эл. почта: alexey.povolotskiy@spbu.ru

 

Санкт-Петербургский горный университет императрицы Екатерины II, Санкт-Петербург, Россия
А. Н. Кущенко, ассистент кафедры общей и технической физики, канд. техн. наук, эл. почта: Kuschenko_AN@pers.spmi.ru
И. Ю. Мухараева, ассистент кафедры общей и технической физики, канд. физ.-мат. наук, эл. почта: Mukharaeva_IYu@pers.spmi.ru

Реферат

Композиции Pb – Sb – Te достаточно активно применяют в цветной металлургии и в современном материаловедении, в том числе в свинцово-сурьмянистых сплавах. Введение в сплавы различных допирующих добавок позволяет достичь необходимых на практике улучшенных механических, теплофизических и других физических свойств. В последние годы усилился интерес к соединению PbSb2Te4— перспективному для использования в качестве термоэлектрического материала, материала для разработки приборов в области спинтроники, а также в качестве топологического изолятора. В настоящее время в литературе недостаточно освещены некоторые вопросы, актуальные для создания материалов на основе PbSb2Te4 с заданными свойствами, например обладает ли PbSb2Te4 проводимостью, характерной для металлов, и насколько корректно считать это соединение металлом, ориентируясь на его электрофизические свойства. Приведены и проанализированы полученные данные рентгеноструктурных и физических исследований кристаллов PbSb2Te4, выращенных методом Чохральского. Установленные особенности фазового состава кристаллов объясняют нестыковку результатов исследований электрофизических и оптических свойств. Выполнена оценка оптической ширины запрещенной зоны. Исследуемые кристаллы по своим электрофизическим свойствам занимают промежуточное положение между классическими металлами и полупроводниками. Они характеризуются отличной от нуля электрической проводимостью и концентрацией носителей тока (дырок) при низких (Т ≈ 77К) температурах, металлическим характером температурной зависимости проводимости и плохо легируются в узком диапазоне концентраций дырок. Благодаря собственным точечным электрически активным дефектам образцы имеют высокую концентрацию дырок (p ≈ 3,2·1020 см–3) по данным из эффекта Холла. При этом соединение характеризуется наличием малой запрещенной зоны (порядка 0,24 эВ), что является характерным признаком полупроводников.

Ключевые слова Свинцово-сурьмянистые сплавы, системы Pb – Sb – Te, Pb – Sb – Te – Cu, легирование, наноразмерные включения, структура, свойства, проводимость металла
Библиографический список

1. Dunaev Yu. D. Insoluble anodes made of lead alloys. Alma-Ata : Nauka Kazakhskoy SSR, 1978. 316 p.
2. Mineev G. G., Mineeva T. S., Zhuchkov I. A., Zelinskaya E. V. Theory of metallurgical processes. Irkutsk : Izdatelstvo IrGTU, 2010. 524 p.
3. Mulloeva N. M., Ganeev I. N. Alloys of lead with alkaline earth metals. Dushanbe : Andaleb-R, 2015. 168 p.
4. Khudeyberdizoda S. U. Effect of copper and tellurium additions on the physical and chemical properties of lead and lead-antimony alloy SSu3: Extended abstract of PhD dissertation. Dushanbe : Institut khimii im. V. I. Nikitina NAN Tadzhikistana, 2022. 28 p.

5. Nurmamat M., Okamoto K., Siyuan Zhu et al. Topologically nontrivial phase-change compound GeSb2Te4. ACS Nano. 2020. Vol. 14, Iss. 7. pp. 9059–9065.
6. Wang J.-J., Zhang H.-M., Wang X.-D. et. al. In-plane twinning defects in hexagonal GeSb2Te4. Advanced Materials Technology. 2022. Vol. 7. 2200214.
7. Ganiev I. N., Aminbekova M. S., Navruzov Kh. P., Eshov B. B., Mulloeva M. M. Effect of zinc additions on the temperature dependence of thermal capacity and on the changing thermodynamic functions of the lead-antimony alloy SSu3. Bulletin of the Siberian State Industrial University. 2023. Vol. 43, No. 1. pp. 50–58.
8. Niezov O. Kh., Ganiev I. N., Safarov A. G., Mulloeva N. M., Yakubov U. Sh. Temperature dependence of thermal capacity and the changing thermodynamic functions of the lead alloy SSu3 with calcium. Bulletin of the South Ural State University. Series Metallurgy. 2019. Vol. 19, No. 3. pp. 33–43.
9. Ganiev I. N., Niezov O. Kh., Safarov A. G., Mulloeva N. M. Effect of strontium on the thermal capacity and the changing thermodynamic functions of the lead alloy SSu3. Bulletin of the Saint Petersburg State Institute of Technology (Technical University). 2018. No. 47 (73). pp. 36–42.
10. Rusina G. G., Borisova S. D., Chulkov E. V. The atomic structure and phonons of an ultrathin Pb film at the surface of Al (100). JETP Letters. 2014. Vol. 100, No. 4. pp. 261–266.
11. Silkin I. V. et al. Three- and two-dimensional topological insulators in Pb2Sb2Te5, Pb2Bi2Te5, and Pb2Bi2Se5 layered compounds. JETP Letters. 2011. Vol. 94, Iss. 3. pp. 217–221.
12. Ikeda T. et al. Solidification processing of alloys in the pseudo-binary PbTe – Sb2Te3 system. Acta Materialia. 2007. Vol. 55, Iss. 4. pp. 1227–1239.
13. Shelimova L. E. et al. Synthesis and structure of layered compounds in the PbTe – Bi2Te3 and PbTe – Sb2Te3 systems. Inorganic Materials. 2004. Vol. 40, Iss. 12. pp. 1264–1270.
14. Ikeda T. et al. A combinatorial approach to microstructure and thermopower of bulk thermoelectric materials: the pseudo-ternary PbTe – Ag2Te –Sb2Te3 system. Journal of Materials Chemistry. 2012. Vol. 22, Iss. 46. 24335.
15. Papikyan A. et al. Thermoelectric and memristor features of the Sb2Te3/Sb2S3/Sb2Te3 and Ag/Sb2Te3/Ag structures. Fizika i tekhnika poluprovodnikov. 2022. Vol. 56, Iss. 3. pp. 370–375.
16. Usmanskiy Ya. S. et al. Crystallography, roentgenography and electron microscopy. Moscow : Metallurgiya, 1982. 632 p.
17. DIFFRACplus TOPAS, Technical Reference. DOC-M88-EXX066, V4.2-01.2009. Bruker AXS GmbH, Karlsruhe, Germany.
18. Bublik V. T. et al. Analysis of anisotropy of properties on the basis of stu dies of texture of coarse-grained ingots of thermoelectric materials. Inorganic Materials. 2011. Vol. 47, No. 14. pp. 1563–1568.
19. Domashevskaya E. P., Bashkov I. V. et al. Obtaining and determining the composition and thermoelectric properties of ternary solid solutions of (BixSb1–x)2Te. Condensed Matter and Interphases. 2014. Vol. 16, No. 4. pp. 406–417.
20. Nemov S. A. et al. The valence zone structure in PbSb2Te4 and anisotropy of hole relaxation time. Physics of Complex Systems. 2021. Vol. 2, Iss. 4. pp. 165–171.
21. Evang V. et al. Thermally controlled charge-carrier transitions in di sordered PbSbTe chalcogenides. Advanced Materials. 2022. Vol. 34, Iss. 3. 2106868.
22. New Materials. Preparation, properties and applications in the aspect of nanotechnology. New York : Nova Science Publishers, Inc., 2020. 249 p.
23. Applied Aspects of Nano-Physics and Nano-Engineering. New York : Nova Science Publishers, Inc., 2019. 308 p.
24. Klimov V. V. Nanoplasmonics. Moscow : FIZMATLIT, 2010. 480 p.
25. Wang L.-L. Highly tunable band inversion in AB2 X4 (A = Ge, Sn, Pb; B = As, Sb, Bi; X = Se, Te) compounds. Physical Review Materials. 2022. Vol. 6, Iss. 9. 094201.
26. Brichkin V. N., Vorobiev A. G., Bazhin V. Y. Mining Institute’s metallurgists: a tradition serving the country, science and production industry. Tsvetnye Metally. 2020. No. 10. pp. 4–13.
27. Popova A. N., Klimenkov B. D., Grabovskiy A. Yu. Mining University’s plasma nanotechnology and energy school. Izvestiya VUZ. Applied Nonlinear Dynamics. 2021. Vol. 29, No. 2. pp. 317–336.
28. Syrkov A. G., Yachmenova L. A. Features of obtaining metallurgical products in the solid-state hydride synthesis conditions. Journal of Mining Institute. 2022. Vol. 256. pp. 651–662.
29. Tomaev V. V., Syrkov A. G., Sychov M. M. et al. Development of scientific fundamentals for the conversion of a virtual binary lead selenide ferroelectric into a real ferroelectric of lead selenite for physico-chemical sensors. Materials Science Forum. 2021. Vol. 1040. pp. 75–86.
30. Tomaev V. V. Control over the properties of composite nanomaterials made with chalcogenides, oxides and halogenides of lead, tin and silver. Proceedings of the Nanophysics & Nanomaterials International Conference. Saint Petersburg : Sankt-Peterburgskiy gornyi universitet, 2022. pp. 293–298.
31. Lutskiy D. S., Ignatovich A. S. Understanding the hydrometallurgical recovery of copper and rhenium when processing off-grade copper concentrates. Journal of Mining Institute. 2021. Vol. 251. P. 723–729. DOI: 10.31897/PMI.2021.5.11
32. Baake E., Shpenst V. A. Recent scientific research on electrothermal metallurgical processes. Journal of Mining Institute. 2019. Vol. 240. pp. 660–668.
33. Cheremisina E., Cheremisina O., Ponomareva M., Bolotov V., Fedorov A. Kinetic features of the hydrogen sulfide sorption on the ferro-manganese material. Metals. 2021. Vol. 11. P. 90. DOI: 10.3390/met11010090
34. Smerdov R. S., Mustafaev A. S., Spivak Yu. M. et al. Porous siliconbased nanostructures for solar concentrator systems. Applied Aspects of Nano-Physics and Nano-Engineering. New York : Nova Science Publishers, Inc., 2019. pp. 83–86.
35. Litvinova T. E., Kashurin R., Lutskiy D. Complex formation of rare-earth elements in carbonate–alkaline media. Materials. 2023. Vol. 16. P. 3140. DOI: 10.3390/ma16083140
36. Bazhin V. Y., Aryshenskii E., Hirsch J., Kawalla R. et al. Impact of Zener-Hollomon parameter on substructure and texture evolution during thermomechanical treatment of iron-containing wrought aluminium alloys. Transactions of Nonferrous Metals Society of China. 2019. Vol. 29, Iss. 5. P. 893–906. DOI: 10.1016/S1003-6326(19)64999-X
37. Smerdov R. S., Mustafaev A. S., Spivak Yu. M. et al. Composite nanostructured materials for plasma energetic systems. Applied Aspects of Nano-Physics and Nano-Engineering. New York : Nova Science Publishers, 2019. pp. 229–236.
38. Litvinenko V. S., Tsvetkov P. S., Dvoynikov M. V., Buslaev G. V. Barriers to implementation of hydrogen initiatives in the context of global energy sustainable development. Journal of Mining Institute. 2020. Vol. 244. pp. 428–438.
39. Kantyukov R. R., Zapevalov D. N., Vagapov R. K. Analysis of the application and impact of carbon dioxide media on the corrosion state of oil and gas facilities. Journal of Mining Institute. 2021. Vol. 250. pp. 578–586.

Полный текст статьи Оценка степени металлического состояния и перспективных свойств кристаллического PbSb2Te4, полученного методом Чохральского
Назад