Journals →  Tsvetnye Metally →  2023 →  #8 →  Back

Marking the 250th anniversary of the Empress Catherine II St Petersburg Mining University and the 20th anniversary of the Nanophysics & Nanomaterials International Conference
ArticleName Influence of 2D graphene nanostructures on the strength characteristics of a composite material
DOI 10.17580/tsm.2023.08.02
ArticleAuthor Nosov V. V., Voznyakovskiy A. P., Korolev I. А., Kulbeda D. А.

Empress Catherine II Saint Petersburg Mining University, Saint Petersburg, Russia:

V. V. Nosov, Professor of the Department of Metrology, Instrumentation and Quality Management, Doctor of Technical Sciences, e-mail:

I. А. Korolev, Associate Professor at the Department of Mechanical Engineering, Candidate of Technical Sciences, e-mail:

D. А. Kulbeda, Master’s Student at the Department of Metrology, Instrumentation and Quality Management, e-mail:


S.V. Lebedev Scientific Research Institute of Synthetic Rubber, Saint Petersburg, Russia:
A. P. Voznyakovskiy, Head of the Sector of Nanoheterogeneous Polymer Materials, Doctor of Chemical Sciences, e-mail:


This paper describes the results of a study that looked at a new epoxy resin composite containing 3% of graphene powder produced from cellulose by the cost-effective and high-performance method of self-propagating hightemperature synthesis (SHS). The aim of this research was to understand the effect of graphene obtained with the help of the above novel technique on the strength of the composite by comparing different strength indicators of its specimens. For this, the authors compared the results of mechanical tests, as well as the registered acoustic emission signals, before and after activated graphene particles were included in the material. The paper also describes a multilevel model of acoustic emission pulse flow, the sample preparation process and the test procedure applied. The authors demonstrate the strengthening effect of graphene related to the optimized physical nanostructure of the material, as well as the prospects of developing non-destructive testing techniques and techniques to test the strength status of final products.

keywords Composite, self-propagating high-temperature synthesis, graphene, acoustic emission, multilevel model, activation energy, microcracks

1. Ageeva K. A. Analysis of the possibility of using coatings based on graphene for processing metal structures to reduce risks man-made accidents. Civil Security Technology. 2022. Vol. 19, No. 2. pp. 92–95.
2. Kozlov G. V., Dolbin I. V. Comparative analysis of the effectiveness of carbon nanotubes and graphene in the reinforcement of polymer nanocomposites. Solid State Physics. 2020. Vol. 62, No. 8. pp. 1240–1243.
3. Feshchenko R. Yu., Eremin R. N., Erokhina O. O., Povarov V. G. Improvement of oxidation resistance of graphite blocks for the electrolytic production of magnesium by impregnation with phosphate solutions. Part 2. Tsvetnye Metally. 2022. No. 1. P. 24–29.
4. Kozyrev B. A., Sizyakov V. M., Arsentyev V. A. Principles of rational processing of red mud with the use of carboxylic acids. Non-ferrous Metals. 2022. No. 2. P. 30–34.
5. Sldozyan R. D., Mikhaleva Z. A., Tkachev A. G. Physical and mechanical properties of building composites with carbon nanostructures. Materials Science. Power Engineering. 2020. Vol. 26, No. 2. pp. 100–110. DOI: 10.18721/JEST.26208

6. Zaitsev I. A., Blokhin A. N. Strengthening of epoxy resins with carbon nanomaterials. Materials Science. Power Engineering. 2021. Vol. 27, No. 1. S. pp. 74–86. DOI: 10.18721/JEST.27106
7. Bouhamed A., Al-Hamry A., Muller C., Choura S. et al. Assessing the electrical behaviour of MWCNTs/epoxy nanocomposite for strain sensing. Composites Part B: Engineering. 2017. Vol. 128. pp. 91–99. DOI: 10.1016/j.compositesb.2017.07.005
8. Yunusov F. A., Larionova T. V., Tolochko O. V. Influence of alloying elements on the structure and properties of composite materials based on aluminum with carbon nanoparticles. Global Energy. 2022. Vol. 28, No. 3. pp. 75–84.
9. Chatterjee S., Wang J. W., Kuo W. S., Tai N. H. et al. Mechanical reinforcement and thermal conductivity in expanded graphene nanoplatelets reinforced epoxy composites. Chemical Physics Letters. 2012. Vol. 531. pp. 6–10. DOI: 10.1016/j.cplett.2012.02.006
10. Stankovich S., Dikin D. A., Dommett G. H. B., Kohlhaas K. M. et al. Graphene-based composite materials. Nature. 2006. Vol. 442. pp. 282–286. DOI: 10.1038/nature04969
11. Sun Xuemei, Sun Hao, Houpu Li, Peng Heisheng. Developing polymer composite materials: Carbon nanotubes or graphene? Advanced Materials. 2013. Vol. 25, Iss. 37. pp. 5153–5176. DOI: 10.1002/adma.201301926
12. Bai Hua, Li Chun, Shi Ge. Functional composite materials based on chemically converted grapheme. Advanced Materials. 2011. Vol. 23, Iss. 9. pp. 1089–1115. DOI: 10.1002/adma.201003753
13. Popova A. N., Klimenkov B. D., Grabovskiy A. Yu. Scientific school for plasma nanotechnology and energy at the Mining University. Izvestiya VUZ. Applied Nonlinear Dynamics. 2021. Vol. 29, No. 2. P. 317–336. DOI: 10.18500/0869-6632-2021-29-2-317-336
14. Atif R., Shyha I., Inam F. Mechanical, thermal, and electrical properties of graphene-epoxy nanocomposites. A review. Polymers. 2016. Vol. 8, Iss. 8. DOI: 10.3390/polym8080281
15. Voznyakovskii A. P., Vozniakovskii A. A., Kidalov S. V. New way of synthesis of few-layer graphene nanosheets by the self propagating high-temperature synthesis method from biopolymers. Nanomaterials. 2022. Vol. 12, Iss. 4. DOI: 10.3390/nano12040657
16. Ellis B. Introduction to the chemistry, synthesis, manufacture and characterization of epoxy resins. Chemistry and Technology of Epoxy Resins. Dordrecht : Springer, 1993. 327 p. DOI: 10.1007/978-94-011-2932-9_1
17. Pascault J.-P., Willams R. J. J. Epoxy polymers: new materials and innovations. Weinheim : WILEY-VCH, 2010. 367 p.
18. Zahed Ahmadi. Epoxy in nanotechnology: A short review. Progress in Organic Coatings. 2019. Vol. 132. pp. 445–448.
19. Smirnova O. M., Menéndez-Pidal I., Alekseev A. V., Petrov D. N. et al. Strain hardening of polypropylene microfiber reinforced composite based on alkali-activated slag matrix. Materials. 2022. Vol. 15, Iss. 4. pp. 2–22. DOI: 10.3390/ma15041607
20. Feshchenko R. Y., Eremin R. N., Erokhina O. O., Dydin V. M. Phosphate solutions wetting of graphite blocks for magnesium electrolysis to enhance their oxidation resistance. Part 1. Tsvetnye Metally. 2020. No. 10. pp. 49–54.
21. Alattar A. L., Bazhin V. Y. Al–Cu–B4C composite materials for the production of high-strength billets. Metallurgist. 2020. Vol. 64, Iss. 5-6. pp. 566–573. DOI: 10.1007/s11015-020-01028-2
22. Vinogradova A., Gogolinskii K., Umanskii A., Alekhnovich V., Tarasova A., Melnikova A. Method of the mechanical properties evaluation of polyethylene gas pipelines with portable hardness testers. Inventions. 2022. No. 7. P. 125. DOI: 10.3390/inventions7040125
23. Potapov A. I., Kondratev A. V. Non-destructive testing of multilayer medium by the method of velocity of elastic waves hodograph. Journal of Mining Institute. 2020. Vol. 243, Iss. 3. pp. 348–356. DOI: 10.31897/PMI.2020.3.348
24. Potapov A. I., Kondratev A. V., Smorodinskii Y. G. Nondestructive testing of structurally inhomogeneous composite materials by the method of elasticwave velocity hodograph. Russian Journal of Nondestructive Testing. 2019. No. 6. pp. 434–442. DOI: 10.1134/S106183091906007X
25. Prokopchuk N. R., Globa A. I., Laptik I. O., Syrkov A. G. The properties of metal coatings enhanced with diamond nanoparticles. Tsvetnye Metally. 2021. No. 6. pp. 50–54.
26. Prokopchuk N. R., Syrkov A. G., Klyuev A. Y., Laptik I. O. Modification of the model compound with nanodiamond particles for precise investment casting of metal articles. Tsvetnye Metally. 2022. No. 6. pp. 59–63.
27. Mikhailov A. V., Fedorov A. S. Analysis of the screw press mouthpiece parameters for 3d extrusion of peat pieces of tubular type. Journal of Mining Institute. 2021. Vol. 249, Iss. 5. pp. 351–365.
28. Vasiliev N. I., Ivanov I. P. Optimization of gear pairs according to stress levels and specific slip of teeth on blocking contours. Journal of Mining Institute. 1986. Vol. 108. pp. 17–21.
29. Petrov D. N. Determination of strength parameters of concrete with polymer fiber. Journal of Mining Institute. 2013. Vol. 204. pp. 236–239.
30. Perveitalov O. G., Nosov V. V, Borovkov A. I., Khanukhov K. M. et al. Calculation of durability and fatigue life parameters of structural alloys using a multilevel model of acoustic emission pulse flow. Metals. 2023. Vol. 13, Iss. 1. DOI: 10.3390/met13010004
31. Grigorev E. V., Nosov V. V. Improving quality control methods to test strengthening technologies: A multilevel model of acoustic pulse flow. Applied Sciences. 2022. Vol. 12, Iss. 9. DOI: 10.3390/app12094549
32. Zhurkov S. N. Kinetic concept of the strength of solids. International Journal of Fracture. 1984. Vol. 26, Iss. 4. pp. 295–307. DOI: 10.1007/BF00962961
33. Korshunov A. I., Novikov S. A. Influence of the scale effect on endurance parameters. Strength of Materials. 1990. Vol. 22. pp. 1003–1006.
34. Morris D. G. Strengthening mechanisms in nanocrystalline metals. Nanostructured Metals and Alloys. Amsterdam, The Netherlands : Elsevier, 2011. pp. 299–328.
35. Regel V. R. Kinetic theory of strength as a scientific basis for predicting the lifetime of polymers under load. Polymer Mechanics. 1971. Vol. 7. pp. 82–93.
36. Zhurkov S. N., Regel V. R., Sanfirova T. Effect of active additives on the time-temperature dependence of polymer strength. Polymer Science USSR. 1965. Vol. 7, Iss. 8. pp. 1486–1491.

Language of full-text russian
Full content Buy