Журналы →  Цветные металлы →  2023 →  №9 →  Назад

Наноструктурированные металлы и материалы
К 250-летию Санкт-Петербургского горного университета императрицы Екатерины II и 20-летию Международного симпозиума «Нанофизика и наноматериалы»
Название Получение и применение нанооксида цинка для антибактериальных покрытий
DOI 10.17580/tsm.2023.09.06
Автор Фам К. Т., Сырков А. Г., Силиванов М. О., Нго К. К.
Информация об авторе

Институт химии и новых материалов, Ханой, Вьетнам:

К. Т. Фам, главный исследователь отдела новых материалов, канд. хим. наук, эл. почта: phamquangthuan1982@gmail.com

 

Санкт-Петербургский горный университет императрицы Екатерины II, Санкт-Петербург, Россия:
А. Г. Сырков, профессор кафедры общей и технической физики, докт. техн. наук, эл. почта: Syrkov_AG@pers.spmi.ru
М. О. Силиванов, доцент кафедры общей и технической физики, канд. хим. наук, эл. почта: Silivanov_MO@pers.spmi.ru
К. К. Нго, аспирант кафедры химических технологий и переработки энергоносителей, эл. почта: ngoquockhanh292@mail.ru

Реферат

Работа посвящена получению нанооксида цинка, характеризации его наноструктуры и состава современными инструментальными методами и разработке ZnO-содержащих много функ циональных покрытий с улучшенными свойствами. Оксид цинка находит разные применения в металлургии: его используют как добавку к металлическому цинку, в пирометаллургических процессах, как компонент защитных покрытий на металле, для цинкатной (иммерсионной) обработки цветных металлов. Наночастицы оксида цинка способны не только усиливать защитные свойства покрытий при воздействии агрессивных сред, но и противостоять действию вирусов, грибков и микробов на поверхности разных материалов. Нанооксид цинка (ZnO) представляет собой нетоксичный неорганический оксид, что делает актуальными исследования его синтеза и целенаправленного применения для защиты от порчи продуктов питания. Наночастицы ZnO были синтезированы гидротермальным методом и охарактеризованы с помощью сканирующей электронной микроскопии (СЭМ) и рентгеновской дифракции. Средний размер кристаллов ZnO, определенный по рентгенограмме, согласуется с результатами, полученными по изображениям СЭМ. Наночастицы ZnO были включены в защитное безопасное покрытие хитозан/гуммиарабик (CH/GA) в качестве антибактериального агента. Показано, что стойкость таких покрытий в случае их нанесения на поверхность катодного никеля может быть усилена путем модифицирования исходного металла катионоактивными препаратами на основе четвертичных аммониевых соединений (триамона и алкамона) и обработки ZnO триамоном. При этом антибактериальные свойства нанооксида цинка не ухудшаются. Нанооксид цинка использован в качестве антибактериальной добавки в защитных покрытиях хитозан/гуммиарабик для хранения пищевой продукции в Международной аграрной компании «Хоанг Ань Зя Лай».

Ключевые слова Защитное покрытие, оксиды цветных металлов, наночастицы ZnO, гидро термальный синтез, катодный никель, антиоксиданты, антибактериальные свойства
Библиографический список

1. Meleshko А. A., Afinogenova A. G., Afinogenov G. E. et al. Аntibacterial inorganic agents: efficiency of using multicomponent systems. Russian Journal of Infection and Immunity. 2020. Vol. 10, No. 4. pp. 639–654. DOI: 10.15789/2220-7619-AIA-1512
2. Matsakova E. G., Simakova D. I. Nanoparticles exhibiting antibacterial effects: properties, preparation, mechanism of action, application. Russian Nanotechnologies. 2020. Vol. 15, No. 2. pp. 238–243. DOI: 10.1134/S1992722320020156
3. Dovnar R. I., Smotrin S. M., Anufrik S. S., Sokolova T. N. et al. Antibacterial and physico-chemical properties of silver and zinc oxide nanoparticles. Journal of Grodno State Medical University. 2022. Vol. 20, No. 1. pp. 98–107. DOI: 10.25298/2221-8785-2022-20-1-98-107
4. Syrkov A. G., Bazhin V. Yu., Mustafaev A. S. Nanotechnology and nanomaterials. Physical and mineral-resource aspects. St. Petersburg : Polytech-Press, 2019. 244 p.
5. Litvinenko V. S., Sergeev I. B. Innovations as a Factor in the Development of the Natural Resources Sector. Studies on Russian Economic Development. 2019. Vol. 6. pp. 637–645. DOI: 10.1134/S107570071906011X
6. Dyshlyuk L. S., Prosekov A. Yu. Investigation of the antibacterial properties of copper and zinc oxide nanoparticles in order to use them as additives in the production of biodegradable films. Bulletin of TVGU. Series: Biology and Ecology. 2019. No. 3. pp. 194–202. DOI: 10.26456/vtbio112
7. Voitekhovsky Yu. L. Crystal morphology of spherical viruses. Journal of Mining Institute. 2021. No. 248. pp. 190–194. DOI: 10.31897/PMI.2021.2.3
8. Litvinenko V. S., Tsvetkov P. S., Dvoynikov M. V., Buslaev G. V. Barriers to implementation of hydrogen initiatives in the context of global energy sustainable development. Journal of Mining Institute. 2020. Vol. 244. pp. 421–431. DOI: 10.31897/pmi.2020.4.5
9. Qing Zhang et al. Methods and applications of nanocellulose loaded with inorganic nanomaterials: A review. Carbohydrate Polymers. 2020. Vol. 229. 115454. DOI: 10.1016/j.carbpol.2019.115454
10. Permiakov N., Maraeva E., Bobkov A., Mbwahnche R. et al. Investigation of the conductive properties of ZnO thin films using liquid probes and creation of a setup using liquid probes EGaIn for studying the conductive properties of thin films. Technologies. 2023. Vol. 11. p. 26. DOI: 10.3390/technologies11010026

11. Kozerozhets I. V., Panasyuk G. P., Azarova L. A., Belan V. N. et al. Obtaining, properties and application of nanosized powders of magnesium oxide. Review. Theoretical Foundations of Chemical Technology. 2021. Vol. 55, No. 6. pp. 663–669. DOI: 10.31857/S004035712106004X
12. Borda d'Água R. et al. Efficient coverage of ZnO nanoparticles on cotton fibers for antibacterial finishing using a rapid and low cost in situ synthesis. New Journal of Chemistry. 2018. Vol. 42, Iss. 2. pp. 1052–1060. DOI: 10.1039/C7NJ03418K
13. Ma J., An W., Xu Q., Fan Q. et al. Antibacterial casein-based ZnO nanocomposite coatings with improved water resistance crafted via double in situ route. Progress in Organic Coatings. 2019. Vol. 134. pp. 40–47. DOI: 10.1016/j.porgcoat.2019.05.007
14. Kozlov P. A., Panshin A. M., Yakornov S. A., Ivakin D. A. Investigation of the behavior of zinc and impurities during alkaline leaching of a zinc-containing product of pyrometallurgical processing of ferrous metallurgy dusts and the phase composition of the residue after leaching. Tsvetnye Metally. 2021. No. 3. pp. 41–49.
15. Korenkova S. Yu., Tikhonov I. A., Chubenko E. B. Synthesis and properties of composite materials based on zinc oxide nanoparticles in a dielectric matrix. Doklady BSUIR. 2020. No. 18. pp. 25–32. DOI: 10.35596/1729-7648-2020-18-6-25-32
16. Kemelbekova A. E., Mukhamedshina D. M. Synthesis of highly dispersed forms of zinc oxide doped with rare earth elements (review). Complex Use of Mineral Raw Materials. 2019. No. 4. pp. 12–18. DOI: 10.31643/2019/6445.33
17. Pozhidaeva S. D., Ageeva L. S., Ivanov A. M. Comparative characteristics of zinc oxidation with the participation of acids at room temperatures. Journal of Mining Institute. 2019. Vol. 235. pp. 38–46. DOI: 10.31897/pmi.2019.1.38
18. Golubev V. O., Litvinova T. E. Dynamic modeling of the industrial cycle of gibbsite crystallization. Journal of Mining Institute. 2021. Vol. 247. pp. 88–101. DOI: 10.31897/PMI.2021.1.10
19. Gromov O. G., Tikhomirova E. L., Saveliev Yu. A. Synthesis of nanopowders of zinc oxide doped with gallium, indium, aluminium. Proceedings of the Kola Scientific Center of the Russian Academy of Sciences. 2018. Vol. 9, No. 2. pp. 764–767. DOI: 10.25702/KSC.2307-5252.2018.9.1.764-767
20. Tomaev V. V., Polishchuk V. A., Vartanyan T. A. Optical density of nanocomposite ZnO films doped with Au, Al, Cu. AIP Conference Proceedings. 2019. 40006. pp. 1–5. DOI: 10.1063/1.5087685
21. Popova A. N., Kison V. E., Sukhomlinov V. S., Mustafaev A. S. Development of new plasma technology methods in synthetic materials production and research. Materials Science Forum. 2021. No. 7. pp. 87–93. DOI: 10.4028/www.scientific.net/MSF.1040.87
22. Beloglazov I. I., Savchenkov S. A., Bazhin V. Y., Kawalla R. Synthesis of Mg – Zn – Nd master alloy in metallothermic reduction of neodymium from fluoride–chloride melt. Crystals. 2020. No. 10. pp. 1–10. DOI: 10.3390/cryst10110985
23. Savchenkov S. A., Bazhin V. Y., Brichkin V. N. Synthesis of magnesiumzinc-yttrium master alloy. Letters on Materials. 2019. Vol. 3, No. 9. pp. 339–343. DOI: 10.22226/2410-3535-2019-3-339-343
24. Ryabko A. A., Maksimov I. A., Moshnikov V. A. Synthesis of optosensitive structures based on zinc oxide. Journal of Physics: Conference Series. 2018. Vol. 993. 012024. DOI: 10.1088/1742-6596/993/1/012024
25. Sanaz Alamdari et al. Green synthesis of multifunctional ZnO/chitosan nanocomposite film using wild Mentha pulegium extract for packaging applications. Surfaces and Interfaces. 2022. Vol. 34. 102349. DOI: 10.1016/j.surfin.2022.102349
26. Kona Mondal, Vaibhav V. Goud, Vimal Katiyar. Effect of waste green algal biomass extract incorporated chitosan-based edible coating on the shelf life and quality attributes of tomato. ACS Food Science & Technology. 2022. Vol. 2. pp. 1151–1165. DOI: 10.1021/acsfoodscitech.2c00174
27. Zhong Q., Long H., Hu W., Shi L. et al. Dual-function antibacterial micelle via self-assembling block copolymers with various antibacterial nanoparticles. ACS Omega. 2020. Vol. 5, No. 15. pp. 8523–8533. DOI: 10.1021/acsomega.9b04086
28. Lin M. H. et al. Hybrid ZnO/chitosan antimicrobial coatings with enhanced mechanical and bioactive properties for titanium implants. Carbohydrate Polymers. 2021. Vol. 257. 117639. DOI: 10.1016/j.carbpol.2021.117639
29. Cazón P., Vázquez M. Mechanical and barrier properties of chitosan combined with other components as food packaging film. Environmental Chemistry Letters. 2020. Vol. 18. pp. 257–267. DOI: 10.1007/s10311-019-00936-3
30. Azmana M., Mahmood S., Hilles A. R., Rahman A. et al. A review on chitosan and chitosan-based bionanocomposites: Promising material for combatting global issues and its applications. International Journal of Biological Macromolecules. 2021. Vol. 185. pp. 832–848. DOI: 10.1016/j.ijbiomac.2021.07.023
31. Vladut C. M. et al. Effect of thermal treatment on the structure and morphology of vanadium doped ZnO nanostructures obtained by microwave assisted sol–gel method. Gels. 2022. Vol. 8. 811. DOI: 10.3390/gels8120811
32. GOST 10106–75. Alkamon ОС-2. Specifications. Introduced: 01.01.1977.
33. TU 6-14-1059–83. Triamon. Introduced: 01.10.1983.
34. Pham V. V., Nguyen T. D., Ha La P. P., Cao M. T. A comparison study of the photocatalytic activity of ZnO nanoparticles for organic contaminants degradation under low-power UV-A lamp. Advances in Natural Sciences: Nanoscience and Nanotechnology. 2020. Vol. 11. DOI: 10.1088/2043-6254/ab6163
35. Ghazvini A. B., Acharya B., Korber D. R. Antimicrobial biodegradable food packaging based on chitosan and metal/metal-oxide, bio-nanocomposites: a review. Polymers. 2021. Vol. 13. 2790. DOI: 10.3390/polym13162790
36. Redozubov S. S., Nenasheva E. A., Gaidamaka I. M., Zaitseva N. V. Low-temperature ceramic materials based on compounds with a pyrochloretype structure in the BI2O3 – ZnO – NB2O5 system. Inorganic Materials. 2020. Vol. 56, No. 1. pp. 77–82. DOI: 10.1134/S0020168520010124
37. Li Z., Liu W., Wang R., Chen F. et al. Interface design for electrically pumped ultraviolet nanolaser from single ZnO-nanorod. Nano Energy. 2022. Vol. 93. 106832. DOI: 10.1016/J.NANOEN.2021.106832
38. Ganzulenko O. Yu., Maskova M. S., Ivantsova N. Yu. Experience of application of nanosized coatings in different branches of industry. Proceedings of International Symposium “Nanophysics and Nanomaterials”. November 23–24, 2022. Saint Petersburg, 2022. pp. 87–92.
39. New materials: Preparation, properties and applications in the aspect of nanotechnology. New York : Nova Science Publishers, Inc., 2020. 247 p.
40. Yachmenova L. A. Developing an energy and resource saving technology for producing metal products using reducer-modifier hydrides: Extended abstract of PhD dissertation. St. Petersburg, 2021. 23 p.
41. Applied aspects of nano-physics and nano-engineering. New York : Nova Science Publishers, Inc., 2019. 308 p.
42. Lange K. R. Surfactants: Synthesis, properties, analysis, application. St. Petersburg : Professiya, 2007. 240 p.
43. Musina D. T., Kabirov V. R., Khanh N. Q. Electrophilic and nucleophilic modifiers as a factor of formation of lipophilic properties of surfacemodified materials. Materials Science Forum. 2021. Vol. 1040. pp. 94–100.
DOI: 10.4028/www.scientific.net/MSF.1040.94
44. Khadiga A. I., Ahmad El Askary, Farea M. O. et al. Perspectives on composite films of chitosan-based natural products (Ginger, Curcumin, and Cinnamon) as biomaterials for wound dressing. Arabian Journal of Chemistry. 2022. Vol. 15, No. 4. 103716. DOI: 10.1016/j.arabjc.2022.103716
45. Abdelkareem A. A. Health benefits of Gum Arabic and medical use. Gum Arabic. Elsevier, 2018. pp. 183–210. DOI: 10.1016/B978-0-12-812002-6.00016-6
46. Pham V. T., Ngo Q. K., Murilio O. H. Synthesis of antibacterial zinc nanooxide and its application in protective coatings for food storage. Proceedings of International Symposium “Nanophysics and Nanomaterials”. November 23–24, 2022. Saint Petersburg, 2022. pp. 316–324.

Language of full-text русский
Полный текст статьи Получить
Назад