Journals →  Obogashchenie Rud →  2023 →  #5 →  Back

ArticleName Conditions for obtaining oxidized graphite with high thermal expansion capacity
DOI 10.17580/or.2023.05.03
ArticleAuthor Gilmanshina T. R., Dubova I. V., Koroleva G. A., Vasilyev G. V.

Siberian Federal University (Krasnoyarsk, Russia)
Gilmanshina T. R., Associate Professor, Candidate of Engineering Sciences, Associate Professor,
Dubova I. V., Associate Professor, Candidate of Engineering Sciences, Associate Professor
Koroleva G. A., Associate Professor, Candidate of Сhemical Sciences, Associate Professor
Vasilyev G. V., Postgraduate Student


Graphite is the only thermodynamically stable modification of carbon with a layered structure that promotes the formation of many intercalated compounds, which, upon thermal shock exposure, form a worm-like porous structure with a low bulk density and high thermal stability. The purpose of this work is to establish the conditions for obtaining oxidized graphite with maximum capacity for further thermal expansion at Russian deposits for subsequent use in advanced fire-retardant coatings for metal products and in foundry refractory coatings. GT-1, GO-1, and GL-1 graphite grades were selected for studying the intercalation processes. These represent natural flake-like crystalline graphite from the Taiginskoe graphite deposit. After an analysis of the available literature, the following oxidative systems were studied: 96-percent H2SO4 – oxidizing agent (K2S2O8, K2Cr2O7,Co3O4,HNO3) system. In the course of the work, the following conditions were established for obtaining Taiginskoe deposit GO-1 and GT-1 grade oxidized graphite: the main graphite fraction size of 200–400 μm or larger; an oxidizing mix based on concentrated sulfuric acid and potassium dichromate mixed at 20 : 1, with an oxidizing agent to graphite ratio of 0.5 : 1.0 by weight; hydrolysis of the oxidized graphite to obtain neutral wash water conditions (pH 6–7); and air drying at 95–100 °C to obtain a constant weight. Significant expansion of intercalated GT-1 and GO-1 graphites begins at 500 °C; at temperatures over 900 °C, the degree of expansion increases from 22 to 105. An X-ray diffraction analysis has confirmed the change in the interplanar distance due to the distribution of the intercalant between the layers of the graphite matrix.

keywords Graphite, graphite intercalation, thermally expanded graphite, fire-retardant coatings, graphite structure, graphite expansion technology

1. Gilmanshina T. R., Lytkina S. I., Khudonogov S. A., Koroleva G. A., Borisyuk V. A., Kritsky D. Yu., Amelchenko V. N. Development of the state-of-the-art technologies for improvement of quality of cryptocrystalline graphite. Nanosistemy, Nanomaterialy, Nanotehnologii. 2018. Vol. 16, No. 1. pp. 83–101.
2. Myasnikova A. V., Gradinar Yu. S., Belova M. Yu., Isaev O. Yu., Kholkin V. A. Influence of the nature of graphite
on the characteristics of thermally expanded graphite materials. Actual problems of powder materials science. Proc. of International scientific and technical conference dedicated to the 85th anniversary of the birth of Academician V. N. Antsiferov. Perm, November 26–28, 2018. pp. 459–464.
3. Tursynbek S., Toresheva G. O., Kudaibergenov K. K., Lyubchyk S., Ongarbayev E. K., Mansurov Z. A. Thermoexpanded graphite: Properties and reception. Gorenie i Plazmokhimiya. 2016. Vol. 14, No. 2. pp. 150–156.
4. Kolchenko A. S., Finaenov A. I., Zabud′kov S. L., Afonina A. V. Influence of the fractional composition of dispersed graphite on the kinetics of formation and properties of interstitial phases in sulfuric acid. Izvestiya Vysshikh Uchebnykh Zavedeniy. Khimiya i Khimicheskaya Tekhnologiya. 2011. Vol. 54, No. 9. pp. 60–63.
5. Bratkov I. V. Development of a method for obtaining, electrochemical properties and application of oxidized natural and modified graphites. Diss. abstract for the degree of Candidate of Engineering Sciences. Ivanovo, 2015. 18 p.
6. Yudina T. F., Bratkov I. V., Ershova T. V., Smirnov N. N., Beilina N. Yu., Mayanov E. P. Optimization of the oxidation regime of natural graphite. Izvestiya Vysshikh Uchebnykh Zavedeniy. Khimiya i Khimicheskaya Tekhnologiya. 2014. Vol. 57, No. 5. pp. 11–13.
7. Antonova K. S., Gyrdymova A. A., Nozdryukhin A. D., Kobeleva A. R. Methods for producing intercalated graphite. Khimiya. Ekologiya. Urbanistika. 2021. Vol. 4. pp. 172–176.
8. Nair S. S., Saha T., Dey P., Bhadra S. Efficiency of different methods of oxidation of graphite: A key route of graphene preparation. Graphene and 2D Materials Technologies. 2021. Vol. 6, Iss. 1. pp. 1–11.
9. Tereshchenko M. D., Yaburov M. I., Lukoyanov V. Yu., Khimenko L. L. Review of the existing methods for intercaling graphite. Vestnik Permskogo Natsionalnogo Issledovatelskogo Politekhnicheskogo Universiteta. Aerokosmicheskaya Tekhnika. 2022. No. 71. pp. 174–181.
10. Moosa A. A., Abed M. S. Graphene preparation and graphite exfoliation. Turkish Journal of Chemistry. 2021. Vol. 45, Iss. 3. pp. 493–519.
11. Sorokina N. E. Intercalated graphite compounds with acids: Synthesis, properties, application. Diss. abstract for the degree of Doctor of Chemical Sciences. Мoscow, 2007. 46 p.
12. Dimiev A. M., Shukhina K., Behabtu N., Pasquali M., Tour J. M. Stage transitions in graphite intercalation compounds: Role of the graphite structure. The Journal of Physical Chemistry C. 2019. Vol. 123, Iss. 31. pp. 19246–19253.
13. Kovalev I. N., Viktorov V. V., Baitinger E. Zh. Structure of residual graphite compounds obtained by hydrolysis of graphite bisulfate. Vestnik Yuzhno-Uralskogo Gosudarstvennogo Universiteta. Seriya: Matematika. Mekhanika. Fizika. 2005. No. 5. pp. 149–155.
14. Dideikin A. T., Sokolov V. V., Sakseev D. A., Baidakova M. V., Vul' A. Ya. Free graphene films obtained from thermally expanded graphite. Zhurnal Tekhnicheskoy Fiziki. 2010. Vol. 80, Iss. 9. pp. 146–149.
15. Yudina T. F., Bratkov I. V., Ershova T. V., Smirnov N. N., Beilina N. Yu. Influence of characteristics of natural graphite on its ability to oxidize. Izvestiya Vysshikh Uchebnykh Zavedeniy. Khimiya i Khimicheskaya Tekhnologiya. 2015. Vol. 58, No. 5. pp. 54–56.
16. Wang X., Wang G., Zhang L. Green and simple production of graphite intercalation compound used sodium bicarbonate as intercalation agent. BMC Chemistry. 2022. Vol. 16, Iss. 1. pp. 2–10.
17. Hassel O., Mark H. Ueber die kristallstruktur des graphits kropfmühl. Zeitschrift für Physik. 1924. Vol. 25. pp. 317–337.

Language of full-text russian
Full content Buy