Journals →  Gornyi Zhurnal →  2023 →  #10 →  Back

MINERAL PROCESSING SOLUTIONS
ArticleName Hydrometallurgical technologies of processing low-grade and low-quality copper concentrates
DOI 10.17580/gzh.2023.10.05
ArticleAuthor Boduen A. Ya.
ArticleAuthorData

RIVS Group, Saint-Petersburg, Russia

A. Ya. Boduen, Director of the Hydrometallurgical Department, Candidate of Engineering, Sciences, a_boduen@rivs.ru

Abstract

The base of the modern copper production is the pyrometallurgical technologies aimed at obtaining rich concentrates. However, the global trends demonstrate a steady decrease in the quality of raw materials, which entails infeasibility of producing high-quality concentrates from some types of ore without heavy losses of valuable components. One of the ways of dealing with the problems connected with processing of low-grade and low-quality raw materials is the intelligent combination of the concentrating, pyro- and hydrometallurgical operations which can make a framework for the ecologically and economically efficient technologies for the high-level processing of raw materials with the incremental marketable production. The aim of this study is to examine efficiency of the hydrometallurgical technologies in conditioning of low-grade copper–pyrite concentrates and in processing of low-quality copper concentrates produced in treatment of low-grade and complex ore of cupriferous sandstone. In case of the low-grade pyritic concentrates, the study focused on the potential of their autoclaving to increase their grade up to the state standard GOST R 52998–2008 with by-production of zinc-bearing solution meant for extraction of zinc as an additional marketable product. For the second-category concentrates, the parameters of autoclave ammonia leaching are determined to be such that to selectively transfer 97 % of copper and 91.5 % of silver to solution in a single process step, without iron and rock-forming minerals. The base stages of a process flowsheet are developed for the bulk processing of low-quality copper concentrates.

keywords Hydrometallurgy, low-grade and low-quality copper concentrate, autoclave conditioning, autoclave ammonia leaching
References

1. Current Status and Use of Mineral Raw Materials in the Russian Federation in 2016 and 2017: State Report. Moscow : Ministry of Natural Resources and Environment. 2018.
2. Ivanov B. S., Boduen A. Ya., Petrov G. V., Fokina S. B. Autoclave oxidizing conditioning of the copper floatation concentrate of the New-Shemursky field. Tsvetnaya metallurgiya. 2015. No. 1. pp. 30–34.
3. Senchenko A. E., Kulikov Yu. V., Kurchevskaya E. M. Investigation of the material composition of Udokan copper deposit ores using the modern methods of process mineralogy. Tsvetnye Metally. 2017. No. 10. pp. 25–35.
4. Ukraintsev I. V., Trubilov V. S., Klepikov A. S. Poor, ill-conditioned and technogenic raw materials as a prospective source of copper obtaining. Tsvetnye Metally. 2016. No. 10. pp. 36–42.
5. Eropkin Yu. I. Beneficiation of mineralized sandstone. Saint-Petersburg : Nauka, 1999.
6. Fatianov A. V., Nikitina L. G., Shcheglova S. A. New processing technologies of copper ores of the Udokan deposit. Gornyi Zhurnal. 2010. No. 5. pp. 54–56.
7. Senchenko A. E., Kulikov Yu. V., Aksenov A. V. Process characteristics of Udokan copper deposit ores, defining the efficient processing flowsheet and prospective ways of the process improvement. Tsvetnye Metally. 2017. No. 10. pp. 35–49.
8. Lapshin D. A., Prostakishin M. F., Zolotarev V. N., Khramtsova I. N. Development of technology of Udokan deposit ores processing. Part 1. Laboratory researches of definition of basic engineering solutions. Tsvetnye Metally. 2014. No 8. pp. 28–33.
9. Lapshin D. A., Prostakishin M. F. Development of technology of processing of Udokan copper deposit ores. Part 2. Peculiarities of ore technological properties. Tsvetnye Metally. 2015. No 2. pp. 52–57.
10. Lapshin D. A., Prostakishin M. F., Zolotarev V. N., Volozhaninov A. B. Development of Udokan deposit ore processing technology. Part 3. Semi-industrial flowsheet testing. Tsvetnye Metally. 2016. No. 5. pp. 17–22.
11. Smirnov G. N., Baranov V. F. Modern approaches to design of large-capacity processing plants by the example of the Udokan copper deposit. Obogashchenie Rud. 2011. No. 3. pp. 40–45.
12. Petrov G. V., Boduen A. Ya., Ivanov B. S., Serebryakov M. A. Investigation of ammonia autoclave leaching of silver and rhenium containing ill-conditioned copper concentrate. Tsvetnye Metally. 2016. No. 10. pp. 23–28.
13. Who is called the Mistress of the Copper Mountain in Russia. Available at: https://forpost-sz.ru/a/2021-08-07/kogo-v-rossii-nazyvayut-khozyajkoj-mednoj-gory (accessed: 29.05.2023).
14. Ukraintsev I. V., Petrov G. V., Ivanov B. S., Boduen A. Ya. Autoclave conditioning of a low-grade sulphide copper concentrate. Tsvetnye Metally. 2016. No. 10. pp. 43–48.
15. Ivanov B. S., Boduen А. Ya., Petrov G. V. Russian pyrite copper–zinc ores: processing problems and technological prospects. Obogashchenie Rud. 2014. No. 3. pp. 7–13.
16. Boduen A. Ya., Ivanov B. S., Ukraintsev I. V. Possibility of application of hydrometallurgical methods for increasing of sulfide copper concentrates quality. Tsvetnye Metally. 2014. No. 11. pp. 37–41.
17. Ivanov B. S., Boduen A. Ya., Yagudina Yu. R., Cheremisina O. V. Possibility of hydrometallurgical conditioning of low grade concentrates, obtained during copper–zinc sulfide ores processing. Tsvetnye Metally. 2014. No. 11. pp. 42–46.
18. Zimin A. V., Gusar L. S., Yagudin R. A., Boduen A. Ya. Pilon-industrial testing of the technology for hydrometallurgical dezincing of cooper concentrate from Uchalinsky mining and concentrating works. Gornyi Zhurnal. 2008. Special issue. pp. 92–96.
19. Maslenitsky I. N., Dolivo-Dobrovolsky V. V., Dobrokhotov G. N., Sobol S. I., Chugaev L. V., Belikov V. V. Autoclaving in non-ferrous metallurgy. Moscow : Metallurgiya, 1969. 351 p.
20. Sadykov S. B. Autoclaving of low-grade zinc concentrates. Yekaterinburg : UrO RAN, 2006.
21. Naboichenko S. S., Shneerson Ya. M., Chugaev L. V., Kalashnikova M. I. Autoclave hydrometallurgy of nonferrous metals. 3 vols. Yekaterinburg : GOU VPO UGTU–UPI, 2009. Vol. 1. 376 p.

22. Listova L. P., Bondarenko G. L. Solubility of lead, zinc and copper sulphides in oxidized environment. Moscow : Nauka, 1969. 163 p.
23. Laptev Yu. V., Sirkis A. L., Kolonin G. R. Sulfur and sulphide formation in hydrometallurgical processes. Novosibirsk : Nauka, 1987. 157 p.
24. Thomas K. G. Pressure oxidation overview. Developments in Mineral Processing. Advances in Gold Ore Processing. 2005. P. 346–369.
25. Karimov K., Shoppert A., Rogozhnikov D., Kuzas E. Effect of preliminary alkali desilication on ammonia pressure leaching of low-grade copper–silver concentrate. Metals. 2020. Vol. 10(6). DOI: 10.3390/met10060812
26. Kakovsky I. A., Naboichenko S. S. Thermodynamics and kinetics of hydrometallurgical processes. Alma-Ata : Nauka, 1986. 272 p.
27. Buketov E. A., Ugorets M. Z. Hydrochemical oxidation of chalcogens and chalcogenides. Alma-Ata : Nauka, 1975. 326 p.
28. Naboichenko S. S. Autoclaving of copper–zinc and zinc concentrates. Moscow : Metallurgiya, 1989. 112 p.
29. Plaksin I. N. Hydrometallurgy. Selectals. Moscow : Nauka, 1972. 278 p.
30. Beloglazov I. N., Morachevsky A. G., Zhmarin E. E. Kinetic mechanisms of dissolution and leaching. Moscow : Ruda i Metally, 2000. 54 p.
31. Lukomskaya G. A., Reznik A. M., Sedova N. A., Voldman G. M. Kinetics of silver dissolution in copper-bearing ammonium–thiosulfate solutions without oxygen. Izvestiya vuzov. Tsvetnaya metallurgiya. 1984. No. 3. pp. 51–54.
32. Boduen A. Ya., Fokina S. B., Petrov G. V., Andreev Yu. V. Ammonia autoclave technology for the processing of low-grade concentrates generated in flotation concentration of cupriferous sandstones. Obogashchenie Rud. 2019. No. 2. рр. 33–38.
33. Melnik B. E. Engineering handbook on inorganic substance technology. 2nd rev. and enlarg. ed. Moscow : Khimiya, 1975. 544 p.

Language of full-text russian
Full content Buy
Back