ArticleName |
Study of the composition of an apatite concentrate obtained
from apatite-nepheline ores from Khibiny fracture zones |
ArticleAuthorData |
Mining Institute of the Kola Science Centre of RAS (Apatity, Russia)
Marchevskaya V. V., Leading Researcher, Candidate of Engineering Sciences, Associate Professor, v.marchevskaya@ksc.ru Mitrofanova G. V., Leading Researcher, Candidate of Engineering Sciences, Associate Professor, g.mitrofanova@ksc.ru Rumyantseva N. S., Leading Technologist |
Abstract |
The share of refractory apatite-nepheline ores obtained from fracture zones in the total raw materials processed has been constantly growing in recent years. Flotation of such ores reduces their process indicators, including hinders the recovery of a standard apatite concentrate with a mass fraction of P2O5 of at least 39.0 %. This is due to the presence of a large number of fine particles — fractured products of nepheline and pyroxenes — in ground ores. Detailed particle size distribution and mineral composition studies were conducted for the highly hypergenically altered apatite-nepheline ore and the apatite concentrate obtained from it. It has been shown that the content of fluorapatite in the apatite concentrate material with a particle size of less than 0.16 mm decreases steadily with lower particle sizes and is more than 10 % lower in the –10 μm sludge fraction as compared to the average for the concentrate. The apatite concentrate, and its fine classes especially, contain clay minerals, zeolites, iron hydroxides, mica, cancrinite, and sodalite. Their content grows steadily with finer particle sizes and increases in the sludge fraction by a factor of 2.3 to 6.3 relative to the average value. The sizes of secondary mineral particles (brown), as estimated from the results of sludge fraction sedimentation tests, were 0.5 to 0.8 μm. No standard apatite concentrate was obtained from the initial ore despite the use of a collector mix with high selectivity to fluorapatite. It was only with preliminary desliming and the removal of fines with a mass fraction of 6.6 % P2O5 that it became possible to improve the resulting concentrate grade to 39.4 % P2O5. |
References |
1. Nepryakhin A. E., Belyaev E. V., Karpova M. I., Luzhbina I. V. Phosphate material resource base of Russia in the light of new technological possibilities. Georesursy. 2015. No. 4. pp. 67–74. 2. Georgievskiy A. F., Bugina V. M. Actual situation and prospects for the development of the phosphate raw material base of Russia. Vestnik Rossiyskogo Universiteta Druzhby Narodov. Seriya: Inzhenernye Issledovaniya. 2020. Vol. 21, No. 3. pp. 197–207. 3. Melnikov N. N. Role of the Arctic Region in the innovation-driven economic development of Russia. Gornyi Zhurnal. 2015. No. 7. pp. 23–27. 4. Pozhilenko V. I., Gavrilenko B. V., Zhirov D. V., Zhabin S. V. Geology of ore districts of the Murmansk region. Apatity: Publishing House of the KSC RAS, 2002. 359 p. 5. Korobov B. L. The Khibiny subsoil is the mineral resource base for the development of JSC «Apatit». Gornyi Zhurnal. 2004. No. 9. pp. 32–34. 6. New Khibiny apatite deposits. Eds. E. A. Kamenev, D. A. Mineev. Мoscow: Nedra, 1982. 182 p. 7. Golovanov G. A., Shifrin S. M., Myrzakhmetov M. M., Kaitmazov V. A. Drainless technology of phosphate raw material beneficiation. Мoscow: Khimiya, 1984. 136 p. 8. Levin B. V., Kalugin A. I. Efficiency of dressing and acid treatment of oversize apatite concentrate produced by Apatit JSC. Gornyi Zhurnal. 2014. No. 10. pp. 57–62. 9. Wyslouzil Н. E. Phosphate producers improve plant performance using Eriez flotation division technology. URL: https://www.eriez.com/Documents/White-Papers/Flotation/EFDPhosphateWhitePaper316.pdf (accessed: 27.11.2023). 10. Matiolo Е., Gonzaga L., Guedes A. L. An аlternative flotation process for apatite concentration of the Itataia carbonaceous uranium-phosphate ore. Beneficiation of phosphates: Proc. of Engineering conferences international, Melbourne, March 2015. 37 p. 11. Xinhai phosphorite ore dressing process. URL: https://www.xinhaimining.com/newo/660.html (accessed: 10.07.2023). 12. Jafari M., Chehreh Chelgani S., Pourghahramani P., Ebadi H. Measurement of collector concentrations to make an efficient mixture for flotation of a low grade apatite. Measurement. 2018. Vol. 121. pp. 19–25. 13. Clapperton A., Bazin C., Downey D., Marois J.-S. Production of a phosphate concentrate from the tailings of a niobium ore concentrator. Minerals. 2020. Vol. 10, Iss. 8. DOI: 10.3390/min10080692 14. Ruan Y., He D., Chi R. Review on beneficiation techniques and reagents used for phosphate ores. Minerals. 2019. Vol. 9, Iss. 4. pp. 253–271. 15. Oleinik T. A., Sklyar L. V., Oleinik M. O., Kushniruk N. V. Features of apatite flotation from ore of the Gare Aghal deposit. Zbahachennya Korysnykh Kopalyn. 2018. Iss. 71. pp. 69–80. 16. Dudkin O. B., Kozyreva L. V., Pomerantseva N. G. Mineralogy of apatite deposits of the Khibiny tundra. Мoscow: Nauka, 1964. 237 p. 17. Dudkin O. B. Technological mineralogy of complex raw materials on the example of deposits of alkaline plutons. Apatity: Publishing House of the KSC RAS, 1996. 133 p. 18. Yakovenchuk V. N., Ivanyuk G. Yu., Pakhomovsky Ya. A., Menshikov Yu. P. Minerals of the Khibiny massif. Мoscow: Zemlya, 1999. 326 p. 19. Konopleva N. G., Ivanyuk G. Yu., Pakhomovsky Ya. A., Yakovenchuk V. N., Mikhailova Yu. A. Typomorphism of fluorapatite in the Khibiny alkaline massif (Kola Peninsula). Zapiski Rossiyskogo Mineralogicheskogo Obshchestva. 2013. No. 3. pp. 65–83. 20. Aleynikova N. S., Gorbunov N. A., Aleynikov N. A., Novikova T. N. Flotation of apatite from oxidized apatitenepheline ores. Beneficiation of apatite, vermiculite and perovskite ores. Leningrad: Nauka, 1967. pp. 23–46. 21. Ratobilskaya L. D., Boyko N. N., Kozhevnikov A. O. Beneficiation of phosphate ores. Мoscow: Nedra, 1979. 261 p. 22. Kalugin A. I. Problems of flotation extraction of apatite from apatite-nepheline ores. Izvestiya Vuzov. Gornyi Zhurnal. 2002. No. 1. pp. 146–153. 23. Mukhina T. N., Marchevskaya V. V., Kalugin A. I. Improvement of apatite recovery from the Khibiny apatite–nepheline ore in flotation. Gornyi Zhurnal. 2020. No. 5. pp. 34–39. 24. Nikitina I. V., Taran A. E., Perunkova T. N., Mitrofanova G. V. Stimulation of flotation of rebellious apatite–nepheline ore with selective collecting agents. Gornyi Informatsionno-analiticheskiy Byulleten'. 2021. No. 11. pp. 95–108. 25. Dorfman M. D. Mineralogy of pegmatites and weathering zones in the iyolite-urtites of the Yukspor mountain of the Khibiny massif. Мoscow-Leningrad: Publishing House of the USSR Academy of Sciences, 1962. 168 p. 26. Dudkin O. B. On the mechanism of formation of films and coatings on Khibiny apatite under hypergenesis conditions. Zapiski Vsesoyuznogo Mineralogicheskogo Obshchestva. 1960. Pt. 89, Iss. 5. pp. 572–576. 27. Aleksandrova T. N., Elbendari A. M. Increasing the efficiency of phosphate ore processing using flotation method. Zapiski Gornogo Instituta. 2021. Vol. 248. pp. 260–271. 28. Yuexian Y., Liqiang M., Mingli C., Qi L. Slime coatings in froth flotation: A review. Minerals Engineering. 2017. Vol. 114. pp. 26–36. 29. Cyclosizer. Model M16. Operation and maintenance manual. Austlalia: MARC Technologies, 2021. 55 p. 30. Elbendary A., Aleksandrova T., Nikolaeva N. Influence of operating parameters on the flotation of the Khibiny apatite-nepheline deposits. Journal of Materials Research and Technology. 2019. Vol. 8, No. 6. pp. 5080–5090. |