Журналы →  Obogashchenie Rud →  2023 →  №6 →  Назад

COMPLEX RAW MATERIAL UTILIZATION
Название Pyrometallurgical processing of quartz-leucoxene to produce synthetic titanite
DOI 10.17580/or.2023.06.06
Автор Kuzin E. N., Mokrushin I. G., Kruchinina N. E.
Информация об авторе

Mendeleev University of Chemical Technology (Moscow, Russia)

Kuzin E. N., Associate Professor, Candidate of Engineering Sciences, e.n.kuzin@muctr.ru
Kruchinina N. E., Dean, Doctor of Engineering Sciences, Professor, kruchinina.n.e@muctr.ru

 

Perm State National Research University (Perm, Russia)

Mokrushin I. G., Associate Professor, Candidate of Сhemical Sciences

Реферат

The quartz-leucoxene concentrate generated in the development of the Yarega oil and titanium deposit represents large-scale waste, for which no industrial application has yet been found. The content of titanium compounds in the enriched concentrate may reach 50 wt%, which confirms the high relevance of this work. The technologies existing currently envisage separate enrichment options for the concentrate upstream of the selective chlorination process. As part of this research work, pyrometallurgical processing of a quartz-leucoxene concentrate was studied, aimed to produce titanite (sphene). The onset temperature of the solid-phase reaction of titanite synthesis in the CaO–TiO2–SiO2 system was established at 1330 °C. The optimal conditions for the pyrometallurgical treatment process are as follows: 1400 °C for three hours at a stoichiometric ratio of CaO–TiO2. A titanite phase and significant impurities of silicon dioxide released from the quartz-leucoxene grains have been identified in the pyrometallurgical processing products. The process of hydrometallurgical reсovery of titanium compounds occurs most intensively at a sulfuric acid concentration of 60 % and at 140–145 °C (boiling of a 60 % H2SO4 solution), with the recovery values exceeding 90 %. The leaching process sediment represents a mix of calcium sulfate, silicon dioxide, as well as unreacted components. A technology concept is proposed for the comprehensive pyro- and hydrometallurgical processing of quartz-leucoxene concentrates to produce raw materials for the manufacture of titanium dioxide/phosphate and complex titanium-containing coagulants.

The research was supported by the Perm Scientific and Educational Center «Rational Subsoil Use», 2023.

Ключевые слова Quartz-leucoxene concentrate, titanates, pyrometallurgy, hydrometallurgy, comprehensive processing, phase transformations
Библиографический список

1. Remizova L. I. Directions of development of raw material base of titanium in the world. Razvedka i Okhrana Nedr. 2020. No. 6. pp. 64–74.
2. Wu X. Applications of titanium dioxide materials URL: https://www.intechopen.com/chapters/77676 (accessed: 16.05.2023).
3. Haider A. J., Jameel Z. N., Al-Hussaini I. H. M. Review on: titanium dioxide applications. Energy Procedia. 2019. Vol. 157. pp. 17–29.
4. Kolli R. P., Devaraj A. A review of metastable beta titanium alloys. Metals. 2018. Vol. 8, Iss. 7. DOI: 10.3390/met8070506
5. Aleksandrov A. V., Lednov S. V., Davydkina E. A. State of the affairs in the titanium industry and development
prospects. Tekhnologiya Legkikh Splavov. 2021. No. 2. pp. 77–82.
6. Sadykhov G. B. Fundamental problems and prospects for the use of titanium raw materials in Russia. Izvestiya Vysshikh Uchebnykh Zavedeniy. Chernaya Metallurgiya. 2020. Vol. 63, No. 3–4. pp. 178–194.
7. On the state and use of mineral resources of the Russian Federation in 2020. State report. Moscow: Ministry of Natural Resources and Ecology of the Russian Federation, 2021. 572 p.
8. Zanaveskin K. L., Zanaveskina S. M., Maslennikov A. N., Politova E. D., Vlasenko V. I., Zanaveskin L. N. Activation of quartz-leucoxene concentrate for processing into titanium tetrachloride. Russian Journal of Applied Chemistry. 2016. Vol. 89. pp. 1733–1739.
9. Sadykhov G. B., Zablotskaya Yu. V., Anisonyan K. G., Kop’ev D. Yu., Olyunina T. V. Extraction of high-quality titanium raw materials from leucoxene concentrates of the Yarega deposit. Russian Metallurgy (Metally). 2018. No. 11. pp. 1015–1019.
10. Zanaveskin K. L., Maslennikov A. N., Zanaveskina S. M., Dmitriev G. S., Zanaveskin L. N., Politova E. D., Vlasenko V. I. Leaching SiO2 and Al2O3 impurities from leucoxene from the Yaregskoe deposit by sodium hydroxide solution. Theoretical Foundations of Chemical Engineering. 2019. Vol. 53. pp. 669–679.
11. Perovskiy I. А., Burtsev I. N., Ponaryadov A. V., Smorokov A. A. Ammonium fluoride roasting and water leaching of leucoxene concentrates to produce a high grade titanium dioxide resource (of the Yaregskoye deposit, Timan, Russia). Hydrometallurgy. 2022. Vol. 210. DOI: 10.1016/j.hydromet.2022.105858
12. Karelin V. A., Karelin A. I. Fluoride technology for processing rare metal concentrates. Tomsk: NTL, 2004. 221 p.
13. Anisonyan K. G., Sadykhov G. B., Olyunina T. V., Goncharenko T. V., Leon L. I. Magnetizing roasting of leucoxene concentrate. Russian Metallurgy (Metally). 2011. No. 7. pp. 656–659.
14. Anisonyan K. G., Kopyev D. Yu., Olyunina T. V., Sadykhov G. B. Beneficiation of oil-saturated leucoxene ore by physical methods with preliminary thermal oil removing. Non-ferrous Metals. 2019. No. 2. pp. 43–47.
15. Istomina E. I., Istomin P. V., Nadutkin A. V., Grass V. E. Desiliconization of leucoxene concentrate through the vacuum silicothermic reduction. Novye Ogneupory. 2020. No. 3. pp. 5–9.
16. Nikolaev A. A., Kirpichev D. E., Nikolaev A. V. Thermophysical parameters of the anode region of plasma arc under the reduction smelting of quartz-leucoxene concentrate in a metal-graphite reactor. Inorganic Materials: Applied Research. 2020. Vol. 11. pp. 563–567.
17. Pat. RU 2779624 Russian Federation.
18. Kuzin E. N., Kruchinina N. E., Fadeev A. B., Nosova T. I. Principles of pyro-hydrometallurgical processing of quartz-leucoxene concentrate with the formation of a pseudobrukite phase. Obogashchenie Rud. 2021. No. 3. pp. 33–38.
19. Kuzin E. N., Kruchinina N. E. Production of complex coagulants based on mineral concentrates and their use in water treatment. Obogashchenie Rud. 2019. No. 3. pp. 43–48.
20. Gerasimova L. G., Maslova M. V., Nikolaev A. I. Decontaminating effluent water containing non-ferrous heavy elements and radionuclides on titanium phosphate. Tsvetnye Metally. 2011. No. 10. pp. 59–64.
21. Zhang Z. X. Activity calculating model of CaO–SiO2–TiO2 molten slag. Solid State Phenomena. 2018. Vol. 279. pp. 92–96.
22. Nakada H., Nagata K. Crystallization of CaO–SiO2–TiO2 slag as a candidate for fluorine free mold flux. ISIJ International. 2006. Vol. 46, Iss. 3. pp. 441–449.
23. Goroshchenko Ya. G. Chemistry of titanium. Kiev: Naukova Dumka, 1970. 416 p.
24. Kuzin E. N. Application of the method of atomic emission spectroscopy with microwave (magnetic) plasma in the processes of identifying the chemical composition of steelmaking waste. Chernye Metally. 2022. No. 10. pp. 79–82.
25. Ismael M. H., Mohammed H. S., El Hussaini O. M., El-Shahat M. F. Kinetics study and reaction mechanism for titanium dissolution from rutile ores and concentrates using sulfuric acid solutions. Physicochemical Problems of Mineral Processing. 2022. Vol. 58, Iss. 1. pp. 138–148.
26. Wang W., Zeng D., Chen Q., Yin X. Experimental determination and modeling of gypsum and insoluble anhydrite solubility in the system CaSO4–H2SO4–H2O. Chemical Engineering Science. 2013. Vol. 101. pp. 120–129.
27. Shen L., Sippola H., Li X., Lindberg D., Taskinen P. Thermodynamic modeling of calcium sulfate hydrates in a CaSO4–H2SO4–H2O system from 273.15 to 473.15 K up to 5 m sulfuric acid. Journal of Chemical & Engineering Data. 2020. Vol. 65, Iss. 5. pp. 2310–2324.
28. Lazareva I. V., Gerasimova L. G., Okhrimenko R. F., Maslova M. V. Reaction of sphene with sulfuric acid solutions. Zhurnal Prikladnoy Khimii. 2006. Vol. 79, No. 1. pp. 18–21.
29. Gerasimova L. G., Maslova M. V., Lazareva I. V., Matveeva V. A. Use of sphene concentrate to obtain sorbents. Obogashchenie Rud. 2005. No. 4. pp. 31–34.
30. Maslova M. V., Gerasimova L. G., Okhrimenko R. F., Chugunov A. S. Study of the composition of ion exchange
materials based on titanium phosphate. Zhurnal Prikladnoy Khimii. 2006. Vol. 79, No. 11. pp. 1813–1817.
31. Kuzin E., Averina Yu., Kurbatov A., Kruchinina N., Boldyrev V. Titanium-containing coagulants in wastewater treatment processes in the alcohol industry. Processes. 2022. Vol. 10, Iss. 3. DOI: 10.3390/pr10030440

Language of full-text русский
Полный текст статьи Получить
Назад