Библиографический список |
1. Volkov A., Chelyshkov P., Lysenko D., Information Management in the Application of BIM in Construction. Stages of Construction. Procedia Engineering. 2016. No. 153. pp. 833–837. 2. Tan Qu, Sun W. Usage of 3D Point Cloud Data in BIM (Building Information Modeling): Current Applications and Challenges. Journal of Civil Engineering and Architecture. 2015. No. 9. pp. 1269–1278. 3. Nicał A. K., Wodyński W. Enhancing Facility Management through BIM 6D. Procedia Engineering. 2016. No. 164. pp. 299–306. 4. Badenko, V., Bolshakov, N., Tishchenko, E., et al. Integration of digital twin and BIM technologies within factories of the future. Magazine of Civil Engineering. 2021. Iss. 101(1). ID. 10114. 5. McArthur J. J. A Building Information Management (BIM) Framework and Supporting Case Study for Existing Building Operations, Maintenance and Sustainability. Procedia Engineering. 2015. Vol. 118. pp. 1104–1111. 6. Ruzsa C. Digital twin technology—external data resources in creating the model and classification of different digital twin types in manufacturing. Procedia Manufacturing. 2021. Vol. 54. pp. 209–215. 7. Heaton J., Parlikad A. K. Asset Information Model to support the adoption of a Digital Twin: West Cambridge case study. IFAC-PapersOnLine. 2020. Vol. 53, Iss. 3. pp. 366–371. 8. Grytting I., Svalestuen F., Lohne J. et al. Use of LoD Decision Plan in BIMprojects. Procedia Engineering. 2017. No. 196. pp. 407–414. 9. Cassano M., Trani M. L. LOD Standardization for construction site elements. Procedia Engineering. 2017. Vol. 196. pp. 1057–1064. 10. Trani M. L., Cassano M., Todaro D. et al. BIM Level of detail for construction site design. Procedia Engineering. 2015. Vol. 123. pp. 581–589. 11. Saptari A. Y., Hendriatiningsih S., Hernandi A. et al. Level of detail analysis for property and building information modeling (BIM) integration. International Journal of Geoinformatics. 2020. Vol. 16(2). pp. 89–97. 12. Hijazi A. A., Omar H. A. Level of detail specifications, standards and fileformat challenges in infrastructure projects for BIM level three. WIT Transactions on The Built Environment. 2017. Vol. 169. pp. 143–154. 13. Eriksson A., Sedelius E., Berglund J., Johansson B. Virtual factory layouts from 3D laser scanning — A novel framework to define solid model requirements. Procedia CIRP. 2018. No. 76. pp. 36–41. 14. Hossain M. A. J., Yeoh K. W. BIM for Existing Buildings: Potential Opportunities and Barriers. IOP Conference Series: Materials Science and Engineering. 2018. No. 371. pp. 1–9. 15. Herr C. M., Fischer T. BIM adoption across the Chinese AEC industries: An extended BIM adoption model. Journal of Computational Design and Engineering. 2019. Vol. 6(2). pp. 173–178. 16. Kassem M., Kelly G., Dawood N. et al. BIM in facilities management applications: A case study of a large university complex. Built Environment Project and Asset Management. 2015. Vol. 5(3). pp. 261–277. 17. Kuznetsova A. A. The use of terrestrial laser scanning for the development and control the design documentation of reconstruction projects. Transportation Soil Engineering in Cold Regions. 2019. Vol. 2. pp. 177–184. 18. Kuznetsova A., Bryn M. J. A. The Terrestrial laser scanning during the industrial object construction results analysis. IOP Conference Series: Materials Science and Engineering. 2019. Vol. 698, Iss. 4. ID. 044008. 19. Esfahani M. E., Rausch C., Sharif M. M. et al. Quantitative investigation on the accuracy and precision of Scan-to-BIM under different modeling scenarios. Automation in Construction. 2021. Vol. 126. ID. 103686. 20. Chacón R., Puig-Polo C., Real E. TLS measurements of initial imperfections of steel frames for structural analysis within BIM-enabled platforms. Automation in Construction. 2021. Vol. 125. ID. 103618. 21. Altyntsev M. A., Karpik P. A. Creating metric simulated model of a “Digital Twin” by the active earth remote sensing method. Vestnik SGUGiT. 2020. Vol. 25, No. 4. pp. 58–67. 22. Beloglazov I. I., Petrov P. A., Bazhin V. Yu. The concept of digital twins for tech operator training simulator design for mining and processing industry. Eurasian Mining. 2020. No. 2. pp. 50–54. 23. Vinogradov A. I., Yastremsky V. N., Ivanov A. S. Innovative technologies to produce mine surveying works. Gornyi Zhurnal. 2012. No 10. pp. 54–60. 24. Mill T., Alt A., Liias R., Combined 3D building surveying techniques—Terrestrial laser scanning (TLS) and total station surveying for BIM data management purposes. Journal of Civil Engineering and Management. 2013. No. 19(1). pp. 23–32.
25. Zaczek-Peplinska J., Kowalska M. E., Łapiński S., Grzyb M. Multi-temporal survey of diaphragm wall with terrestrial laser scanning method. Open Geosciences. 2020. No. 12. pp. 656–667. 26. Zarovnyaev B. N., Shubin G. V., Vasiliev I. V., Varlamova L. D. Monitoring the condition of deep quarry walls using terrestrial laser scanning technology. Gornyi Zhurnal. 2016. No 9. pp. 37–40. 27. Stupnik N. I., Popov S. O., Azaryan V. A., Karamanits F. I. Investigation of the development parameters of deformation processes in underground mine workings using an automated laser scanning system. Gornyi Zhurnal. 2014. No 5. pp. 70–73. 28. Panzhin A. A. The spatial and temporal geodynamic monitoring at sites subsoil. Gornyi Zhurnal. 2012. No 1. pp. 39–43. 29. Temkin I. O., Myaskov A. V., Deryabin S. A., Rzazade U. A. Digital twins and modeling of the transporting-technological processes for on-line dispatch control in open pit mining. Eurasian Mining. 2020. No. 2. pp. 55–58. 30. Sholomitskii A. A., Akhmedov B. N. Geodesic monitoring of large-span constructions with spatial metal structure. Vestnik of SGUGiT. 2020. Vol. 25(3). pp. 117–126. 31. Sholomitskii A. A., Akhmedov B. N., Medvedskaya, T.M. Study of the accuracy of model construction by sift algorithm for large span structures. Vestnik of SGUGiT. 2021. Vol. 26, No. 3. pp. 44–57. 32. Harmening C., Neuner H. A spatio-temporal deformation model for laser scanning point clouds. Journal of Geodesy. 2020. Vol. 94. pp. 1–25. 33. Schäffer E., Metzner M., Pawlowskij D., Franke J. Seven Levels of Detail to structure use cases and interaction mechanism for the development of industrial Virtual Reality applications within the context of planning and configuration of robot-based automation solutions. Procedia CIRP. 2021. Vol. 96. pp. 284–289. 34. Sukmono A., Putra F. A., Bashit N., Nugraha A. L. Utilization of terrestrial laser scanning data in building information modeling (BIM) for fire disaster evacuation simulation. Civil Engineering and Architecture. 2021. Vol. 9(7). pp. 2129–2139. 35. Honti R., Erdélyi J., Bariczová G., Funtík T., Mayer P. Automated Verification of Building Components Using BIM Models and Point Clouds. Slovak Journal of Civil Engineering. 2020. Vol. 28(3). pp. 13–19. 36. Maalek R., Lichti D. D., Ruwanpura J. Y. Automatic recognition of common structural elements from point clouds for automated progress monitoring and dimensional quality control in reinforced concrete construction. Remote Sensing. 2019. Vol. 11, Iss. 9. pp. 1–23. 37. Macher H., Landes T., Grussenmeyer P. Point clouds segmentation as base for as-built BIM creation. In: ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences. 2015. pp. 191–197. DOI: 10.5194/isprsannals-II-5-W3-191-2015 38. Ochmann S., Vock R., Klein R. Automatic reconstruction of fully volumetric 3D building models from point clouds. ISPRS Journal of Photogrammetry and Remote Sensing. 2019. Vol. 151. pp. 251–262. 39. Akinade O., Oyedele L. O., Ajayi S. et al. Designing out construction waste using BIM technology: Stakeholders’ expectations for industry deployment. Journal of Cleaner Production. 2018. Vol. 180. pp. 375–385. 40. Ge X. J., Livesey P., Wang J. et al. Deconstruction waste management through 3D reconstruction and BIM: A case study. Visualization in Engineering. 2017. Vol. 5. DOI: 10.1186/s40327-017-0050-5 41. Sharafutdinova A. A., Bryn M. J. A. On the accuracy requirements of terrestrial laser scanning for solving engineering and geodetic tasks using BIM. Geodeziya i kartografiya. 2021. No. 8. pp. 2–12. |