Журналы →  Gornyi Zhurnal →  2024 →  №2 →  Назад

ENVIRONMENTAL PROTECTION
Название Purification of mine emissions using heterogenetic fluorine-containing catalyst (fluoride)
DOI 10.17580/gzh.2024.02.15
Автор Ivanova M. S., Tomskiy K. O.
Информация об авторе

Mirny Polytechnic Institute–Division of the Ammosov North-Eastern Federal University, Mirny, Russia

M. S. Ivanova, Associate Professor, Candidate of Chemical Sciences, ims.06@mail.ru
K. O. Tomskiy, Head of Department, Candidate of Engineering Sciences

Реферат

One of the problematic ecological issues of the modern mining industry is the accrescent acid emissions, including carbon and sulfur dioxides. Oxides resultant from complete combustion of hydrocarbon fuel can be trapped using a number of methods. The most effective approach is catalysis. This article discusses catalytic removal of carbon and sulfur dioxides in fluorine-bearing environments such as different-concentration suspensions of calcium fluoride, and determines optimum conditions of the catalytic removal process in such suspensions. The tests of catalytic removal of carbon and sulfur dioxides in a fluorine-bearing environment were carried out under the atmospheric pressure and temperature of 25 °C. The dioxides were passed through the calcium fluoride suspensions of different concentrations. For finding the influence exerted by the treated gas flow rate on the sorption efficiency of the calcium fluoride suspension, the carbon and sulfur dioxides were passed through the suspension at the flow rates of 5∙10–7 to 2∙10–6 m3/s. For recovering catalytic activity of the used calcium fluoride suspension, the system was treated with the atmospheric oxygen flow for one hour. After such regenerative treatment, the catalytic system recovered its oxidation power completely. The authors demonstrate the potential of catalytic removal of acid gases SO2 and CO2 in the calcium fluoride environment. The optimum conditions for the treatment are determined: feed rate of gas flow to the absorbent and concentrations of catalytic systems.

Ключевые слова Carbon dioxide, sulfur dioxide, calcium fluoride, fume gases, purification, heterogenetic catalysis, fluoride
Библиографический список

1. Gambhir A., Tavoni M. Direct air carbon capture and sequestration: How it works and how it could contribute to climate-change mitigation. One Earth. 2019. Vol. 1, Iss. 4. pp. 405–409.
2. Wu H., Chen W., Wu J., Zheng Z., Duan L. Synergistic removal of SOx and NOx in CO2 compression and purification in oxy-fuel combustion power plant. Energy and Fuels. 2019. Vol. 33, Iss. 12. pp. 12621–12627.

3. Antonov K. L., Poddubnyi V. A., Markelov Yu. I., Buevich A. G., Medvedev A. N. et al. Some results of greenhouse gases monitoring in the Arctic region of Russia. Arktika: ekologiya i ekonomika. 2018. No. 1(29). pp. 56–67.
4. Eshmukhamedov M. A., Ponamareva T. V., Raevskaya E. G. Purification of gas emissions from sulfur dioxide by means of activated granulated sorbent. Khimicheskaya bezop asnost. 2020. Vol. 4, No. 1. pp. 170–182.
5. Khairulin S. R., Ismagilov Z. R., Kerzhentsev M. A., Salnikov A. V., Loginov R. I. et al. Carbon materials for gas purification from hydrogen sulphide and prospects of their use in base technologies for associated petroleum gas treatment. Chemistry for Sustainable Development. 2018. Vol. 26, No. 6. pp. 679–689.
6. Bellamy R., Geden O., Fridahl M., Cox E., Palmer J. Editorial: Governing carbon dioxide removal. Frontiers in Climate. 2021. Vol. 3. ID 816346.
7. Moustakas N. G., Lorenz F., Dilla M., Peppel T., Strunk J. Pivotal role of holes in photocatalytic CO2 reduction on TiO2Chemistry—A European Journal. 2021. Vol. 27, No. 68. pp. 17213–172196.
8. Hanbo Yu, Jinhui Huang, Longbo Jiang, Lijian Leng, Kaixin Yi et al. In situ construction of Sn-doped structurally compatible heterojunction with enhanced interfacial electric field for photocatalytic pollutants removal and CO2 reduction. Applied Catalysis B: Environmental. 2021. Vol. 298. ID 120618
9. Ignatieva M. N., Yurak V. V., Logvinenko O. A. Natural capital. Approaches to economic assessment. Eurasian Mining. 2021. No. 1. pp. 39–44.
10. Shepelev I. I., Pilyaeva O. V., Eskova E. N., Kiryushin E. V. Solving the problems of cleaning gas emissions in alumina production. Problemy regionalnoy ekologii. 2020. No. 1. pp. 111–115.
11. Blinovskaya Ya. Yu., Mazlova E. A. Greenhouse gases emissions at coal production and processing: problem status and decrease technologies. Uchenye zapiski Rossiyskogo gosudarstvennogo gidrometeorologicheskogo universiteta. 2019. No. 54. pp. 145–154.
12. Druzhinin P. V., Shkiperova G. T., Potasheva O. V. Environmental impact of economic development and greenhouse gas emission. Drukerovskiy vestnik. 2018. No. 2(22). pp. 203–215.
13. Leonov V. E., Serdyuk A. D. The catalytic neutralization of exhaust gases in ship power plants. Vestnik gosudarstvennogo universiteta morskogo i rechnogo flota imeni admirala S. O. Makarova. 2018. Vol. 10, No. 5. pp. 1015–1024.
14. Nosyrev M. A., Komlyashev R. B., Ilina S. I., Kabanov O. V. Purification of gas emissions from sulfur dioxide in industrial plants. Ekologiya i promyshlennost Rossii. 2018. Vol. 22, No. 8. pp. 24–27.

15. Gazaleeva G. I., Dmitrieva E. G., Demin A. I. Application of carbamide method for sintering off-gases cleaning of sulphur dioxide. Chernaya metallurgiya. Byulletin nauchno-tekhnicheskoy i ekonomicheskoy informatsii. 2019. Vol. 75, No. 9. pp. 1086–1092.
16. Cheremisina O. V., Ponomareva M. A., Bolotov V. A. Utilization of technological gases by perspective sorption materials. Vestnik Yuzhno-Uralskogo gosudarstvennogo universiteta. Seriya: Metallurgiya. 2020. Vol. 20, No. 2. pp. 93–100.
17. Masoud S. M., Vorobeva D. V., Petropavlovskikh D. A. Fluorine-containing ruthenium-based olefin metathesis catalysts. Russian Chemical Reviews. 2021. Vol. 90, Iss. 4 pp. 419–450.
18. Shokova E. A., Tafeenko V. A., Kovalev V. V. Trifluoroacetic anhydride as an activator of the acylation reaction of methyl aryl ketones with carboxylic acids. Russian Journal of Organic Chemistry. 2020. Vol. 56, No. 10. pp. 1770–1774.
19. Abdollahi M., Larimi A., Jiang Z., Khorasheh F., Ghotbi C. Photocatalytic oxidative desulfurization of mod el fuel over visible light-active Cu-impregnated carbondoped TiO2Journal of Cleaner Production. 2022. Vol. 380. ID 134968.
20. Kong Z., Xue Y., Hao T., Wu J., Zhang Y./ et al. Carbon-neutral treatment of N, N-dimethylformam ide-containing wastewater by up-flow anaerobic sludge blanket: CO2 reduction and bio-energy cleaner production. Journal of Cleaner Production. 2022. Vol. 380. ID 134880.
21. Abhishek K., Shrivastava A., Vimal V., Gupta A. K., Bhujbal S. K. et al. Biochar application for greenhouse gas mitigati on, contaminants immobilization and soil fertility enhancement: A state-of-the-art review. Science of the Total Environment. 2022. Vol. 853. ID 158562.
22. Ozcan M. C., Karaman B. P., Oktar N., Dogu T. Dimethyl ether from syngas and effect of CO2 so rption on product distribution over a new bifunctional catalyst pair containing STA@SBA-15. Fuel. 2022. Vol. 330. ID 125607.
23. Ruan H., Wu S., Chen X., Zou J., Liao J. et al. Capturing CO2 with NaOH solution from reject br ine via an integrated technology based on bipolar membrane electrodialysis and hollow fiber membrane contactor. Chemical Engineering Journal. 2022. Vol. 450. ID 138095.
24. Sooriyan S. K., Ibrahim N., Hanif M. A., Hasan M., Abdullah S. et al. Performance optimization of sulfur dioxide (SO2) desulfurization by oil palm-based activated carbon using Box-Behnken design. Biointerface Research in Applied Chemistry. 2022. Vol. 12, Iss. 6. pp. 7972–7982.
25. Rui N., Shi R., Gutiérrez R. A., Rosales R., Kang J. et al. CO2 Hydrogenation on ZrO2/Cu(III) surfaces: Production of methane and methanol. Industrial and Engineering Chemistry Research. 2021. Vol. 60, No. 51. pp. 18900–18906.
26. Yang X., Yang W., Zhang Y., Tang M., Yang K. et al. Constructing dual-function TiO2/MWCNTs-NH2-HPW composites as both catalysts and adsorbents for highly efficient oxidative adsorption desulfurization in fuel oil. Energy and Fuels. 2021. Vol. 35, Iss. 24. pp. 20000–20015.
27. Hu X., Bobbink F. D., Van Muyden A., Amiri M. T., Bonnin A. et al. Cycloaddition of biogas-contained CO2 into epoxides via ionic polymer catalysis: An experimental and process simulation study. Industrial and Engineering Chemistry Research. 2021. Vol. 60, Iss. 49. pp. 17942–17948.
28. Zhang Y., Wibowo H., Zhong L., Horttanainen M., Wang Z. et al. Cu-BTC-based composite adsorbents for selective adso rption of CO2 from syngas. Separation and Purification Technology. 2021. Vol. 279. ID 119644.
29. Alkhatib I. I. I., Khalifa O., Bahamon D., Abu-Zahra M. R. M., Vega L. F. Sustainability criteria as a game changer in the sea rch for hybrid solvents for CO2 and H2S removal. Separation and Purification Technology. 2021. Vol. 277. ID 119516.
30. Safaei Mahmoudabadi Z., Rashidi A., Tavasoli A. Synthesis of two-dimensional TiO2 multi-walled carbo n nanotube nanocomposites as smart nanocatalyst for ultradeep oxidative desulfurization of liquid fuel: Optimization via response surface methodology. Fuel. 2021. Vol. 306. ID 121635.
31. Jang G. G., Thompson J. A., Sun X., Tsouris C. Process intensification of CO2 capture by low-aqueou s solvent. Chemical Engineering Journal. 2021. Vol. 426. ID 131240.
32. Zhao R., Liu G.,, Wei G., Gao J., Lu H. Analysis of SO2 physisorption by edgefunctionalized nanoporous carbons using grand canonical monte carlo methods and density functional theory: Implications for SO2 removal. ACS Omega. 2021. Vol. 6, Iss. 49. pp. 33735– 33746.
33. Tampubolon F. R. S., Yuwono A. S., Tambunan A. H., Achsani N. A. Coal mining energy utilization and environmental impact management strategy using the LCA method. Nature Environment and Pollution Technology. 2021. Vol. 20, No. 5 (Suppl). pp. 2007–2015.
34. Noushadi A., Fotovat F., Hamzehlouyan T., Vahidi M. Application of an aminofunctionalized MIL-53(Al) MOF a s an efficient, selective, and durable adsorbent for SO2 removal. Journal of Environmental Chemical Engineering. 2022. Vol. 10, Iss. 6. ID 108768.
35. Li X., Huhe T., Zeng T., Ling X., Wang Z. et al. Preparation and SO2 capture kinetics of a DeSOx coating for the desulfurization of exhaust emission. Heliyon. 2022. Vol. 8, Iss. 11. ID e11463.
36. Ramdin M., Morrison A. R. T., De Groen M., Van Haperen R., De Kler R. et al. Highpressure electrochemical reduction of CO2 to formic acid/formate: Effect of pH on the downstream separation process and economics. Industrial and Engineering Chemistry Research. 2019. Vol. 58, No. 51. pp. 22718–22740.
37. Vishnetskaya M. V., Melnikov M. Ya. Transformation of organic and inorganic compounds in trifluoroacetic acid. Russian Journal of Physical Chemistry A. 2016. Vol. 90, No. 9. pp. 1909–1911.

Language of full-text русский
Полный текст статьи Получить
Назад