Journals →  Черные металлы →  2024 →  #2 →  Back

Экология и рециклинг
ArticleName Гранулирование мартеновских шлаков в условиях снижения техногенной нагрузки на окружающую среду
DOI 10.17580/chm.2024.02.13
ArticleAuthor Н. В. Джевага, О. Л. Лобачева
ArticleAuthorData

Санкт-Петербургский горный университет императрицы Екатерины II, Санкт-Петербург, Россия

Н. В. Джевага, доцент кафедры геоэкологии, канд. хим. наук, эл. почта: dzhevaga331@mail.ru
О. Л. Лобачева, доцент кафедры общей и физической химии, канд. хим. наук

Abstract

Рассмотрена проблема техногенной нагрузки на окружающую среду, связанная с образованием и утилизацией мартеновских шлаков на металлургическом предприятии Санкт-Петербурга. Выполнена оценка загрязнения окружающей среды шлаками и подтверждена актуальность обеспечения переработки отходов на рассматриваемом предприятии. На примере образцов мартеновских шлаков определен их химический состав и проведен расчет класса опасности отхода. Предложено гранулирование мартеновских шлаков в качестве альтернативного направления переработки шлаков рассматриваемого предприятия и, как следствие, снижения нагрузки на окружающую среду. Отмечена необходимость корректного подбора параметров гранулированного шлака для его дальнейшей реализации. Предложена гранулирующая установка, габариты которой позволяют ее установить непосредственно вблизи печей. Выполнена оценка экономического эффекта предлагаемого альтернативного направления переработки отходов рассматриваемого металлургического производства. Результаты исследования показали, что гранулирование мартеновских шлаков является эффективным экологически безопасным способом утилизации промышленных отходов и может привести к экономической выгоде для предприятия. Гранулированные мартеновские шлаки могут быть использованы в качестве строительных материалов, дорожных покрытий, для производства цемента.

keywords Переработка отходов, мартеновские шлаки, грануляция, класс опасности отходов, гранулирующая установка, металлургия, окружающая среда, техногенная нагрузка
References

1. Lebedev A. B., Utkov V. A., Bazhin V. Y. Use of alumina production waste red mud during molten sulfur-containing slag granulation. Metallurgist. 2019. Vol. 63. Iss. 7-8. pp. 727–732. DOI: 10.1007/s11015-019-00882-z
2. Eldeeb A. B., Brichkin V. N., Kurtenkov R. V., Bormotov I. S. Study of the pecularities of the leaching process for self-crumbling limestone-kaolin cakes. Obogashchenie rud. 2021. No. 2. pp. 27–32.
3. Fokina S. B., Petrov G. V., Sizyakova E. V., Andreev Yu. V. et al. Technological solutions for recycling zinc-containing waste in the metallurgical industry. Mezhdunarodny zhurnal grazhdanskogo stroitelstva i tekhnologiy. 2019. No. 10 (1). pp. 2083–2089.
4. Chanturiya V. A. Scientific substantiation and development of innovative processes for the extraction of zirconium and rare earth elements in the deep and comprehensive treatment of eudialyte concentrate. Journal of Mining Institute. 2022. Vol. 256. pp. 505–516. DOI: 10.31897/PMI.2022.31.
5. Maksimova V. V., Krasavtseva E. A., Savchenko Y. E., Ikkonen P. V. et al. Study of the composition and properties of the beneficiation tailings of currently produced loparite ores. Journal of Mining Institute. 2022. Vol. 256. pp. 642–650. DOI: 10.31897/PMI.2022.88
6. Chukaeva M. A., Matveeva V. A., Sverchkov I. P. Complex processing of high-carbon ash and slag waste. Journal of Mining Institute. 2022. Vol. 253, Iss. 1. pp. 97–104. DOI: 10.31897/PMI.2022.5
7. Goman I. V., Oblova I. S. Analysis of companies’ corporate social responsibility as a way to develop environmental ethics for students specialising in oil and gas activity. International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management. 2018. Vol. 18, Iss. 5.4. pp. 11–18. DOI: 10.5593/sgem2018/5.4/S22.002
8. Goman I. V., Oblova I. S. Teaching ethical decisions' making to students specializing in economy. International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management. 2018. Vol. 18. pp. 265–273. DOI: 10.5593/sgem2018/5.4/S22.034
9. Romashev A. O., Nikolaeva N. V., Gatiatullin B. L. Adaptive approach formation using machine vision technology to determine the parameters of enrichment products deposition. Journal of Mining Institute. 2022. Vol. 256. pp. 677–685. DOI: 10.31897/PMI.2022.77
10. Aleksandrova T., Nikolaeva N., Afanasova A., Aburova V. et al. Extraction of low-dimensional structures of noble and rare metals from carbonaceous ores using low-temperature and energy impacts at succeeding stages of raw material transformation. Minerals. 2023. Vol. 13, Iss. 1. 84. DOI: 10.3390/min13010084
11. Kondrasheva N. K., Eremeeva A. M. Production of biodiesel fuel from vegetable raw materials. Journal of Mining Institute. 2023. Vol. 260. pp. 248–256. DOI: 10.31897/PMI.2022.15
12. Shapovalov N. A., Zagorodnyuk L. Kh., Tikunova I. V., Shekina A. Yu. Rational ways of using steelmaking slag. Fundamentalnye issledovaniya. 2013. No. 1-2. pp. 439–443.
13. Barkhatov V. I., Dobrovolsky I. P., Kapkaev Yu. Sh. Industrial and consumer waste – a reserve of building materials. Chelyabinsk : Izdatelstvo Chelyabinskogo gosudarstvennogo universiteta, 2017. 477 p.
14. Petrova T. A., Rudzisha E., Alekseenko A. V., Bech J., Pashkevich M. A. Rehabilitation of disturbed lands with industrial wastewater sludge. Minerals. 2022. Vol. 12, Iss. 3. 376. DOI: 10.3390/min12030376
15. Cherkasova M. V., Kuksov M. P., Samukov A. D., Antonova V. S. Specific features of nickel waste grinding in gaseous media. Obogashchenie rud. 2022. No. 5. pp. 46–50.
16. Dong K., Xie F., Wang W., Chang Y. et al. Calcination of Calcium Sulphoaluminate Cement Using Pyrite-Rich Cyanide Tailings. Crystals. 2020. Vol. 10, Iss. 11. 971.
17. Juenger M. C. G., Winnefeld F., Provis J. L., Ideker J. H. Advances in alternative cementitious binders. Сement and Concrete Research. 2011. Vol. 41, Iss. 12. pp. 1232–1243.
18. Pashkevich M. A., Korotaeva A. E., Matveeva V. A. Experimental modeling of the system of swamp biogeocenoses to increase the efficiency of quarry water treatment. Zapiski Gornogo instituta. 2023. Vol. 263. pp. 785–794.
19. Wang X., Li X., Yan X., Tu C. et al. Environmental risks for application of iron and steel slags in soils in China: a review. Pedosphere. 2021. Vol. 31, Iss. 1. pp. 28–42.
20. Ettler V., Komґarkovґa M., Jehlicka J. et al. Leaching of lead metallurgical slag in citric solutionsimplications for disposal and weathering in soil environments. Chemosphere. 2004. Vol. 57, Iss. 7. pp. 567–577.
21. Sun J., Chen Z. Effect of silicate modulus of water glass on the hydration of alkali-activated converter steel slag. Journal of Termal Analysis and Calorimetry. 2019. Vol. 138, Iss. 1. pp. 47–56.
22. Komnitsas K., Zaharaki D., Bartzas G. Effect of sulphate and nitrate anions on heavy metal immobilisation in ferronickel slag geopolymers. Applied Clay Science. 2013. Vol. 73. pp. 103–109.
23. Lobacheva O., Dzhevaga N. The experimental study of innovative methods regarding the removal of Sm(III). Applied Sciences. 2021. Vol. 11. 7726. DOI: 10.3390/app11167726
24. Dzhevaga N., Lobacheva O. Reduction in technogenic burden on the environment by flotation recovery of rare earth elements from diluted industrial solutions. Applied Sciences. 2021. Vol. 11. 7452. DOI: 10.3390/app11167452
25. Lebedev A. B., Utkov V. A., Khalifa A. A. Sintered sorbent utilization for H2S removal from industrial flue gas in the process of smelter slag granulation. Journal of Mining Institute. 2019. Vol. 237. pp. 292–297. DOI: 10.31897/PMI.2019.3.292
26. Lebedev A. B., Shuiskaya V. S. Influence of composition and cooling rate of alumocalcium slag on its crumblability. Izvestiya vuzov. Ferrous Metallurgy. 2022. Vol. 65, Iss. 11. pp. 806–813. DOI: 10.17073/0368-0797-2022-11-806-813
27. Kravchenko V. P. Analysis of methods for granulation of slag melts and factors affecting the quality of granulated slag. Vestnik Priazovskogo gosudarstvennogo tekhnicheskogo universiteta. Seriya: Tekhnicheskie nauki. 2015. No. 1 (30). pp. 51–58.
28. GOST 32862–2014. Automobile roads of general use. Rubble and sand slag. Sampling. Introduced: 01.07.2015.
29. Order of the Ministry of Natural Resources of the Russian Federation dated December 4, 2014 No. 536 “On approval of the Criteria for classifying waste into hazard classes I–IV according to the degree of negative impact on the environment”.
30. SanR&S (SanPiN) 1.2.3685-21 “Hygienic standards and requirements for ensuring the safety and (or) harmlessness of environmental factors to humans”.
31. Order of the Ministry of Agriculture of Russia dated December 13, 2016 No. 552 (as amended on March 10, 2020) “On approval of water quality standards for water bodies of fishery importance, including standards for maximum permissible concentrations of harmful substances in the waters of water bodies of fishery importance".
32. Harmful chemicals. Inorganic compounds of elements of groups I–IV, edited by V. A. Filov. Leningrad, 1988. 512 p.
33. Harmful chemicals. Inorganic compounds of elements of groups V–VII, edited by V. A. Filov. Leningrad, 1989. 592 p.
34. New reference book for chemist and technologist. Basic properties of inorganic, organic and organoelement compounds. Saint Petersburg: ANO "Mir i Semya", 2002. 1280 p.
35. Grushko Ya. M. Harmful inorganic compounds in industrial wastewater. Reference book. Leningrad : Khimiya, 1979.
36. GOST 5578–2019. Slag crushed stone and slag sand of ferrous and non-ferrous metallurgy for concretes. Specifications. Introduced: 01.06.2020.
37. Yang Shu, Zhang Li, Yu De. Intensive development and comprehensive utilization of metallurgical slag. Applied Mechanics and Materials. 2012. Vol. 174–177. pp. 1424–1428. DOI: 10.4028/www.scientific.net/AMM.174-177.1424
38. Dang J., Li J., Lv X., Yuan S. et al. Metallurgical Slag. Crystals. 2022. Vol. 12. 407.
39. Traistă Eugen, Bădulescu Camelia, Lazăr Maria, Traistă Camelia. Research on the recovery of copper from metallurgical slag. Mining Revue. 2021. Vol. 27. pp. 40–44. DOI: 10.2478/minrv-2021-0024
40. GOST 32826–2014. Automobile roads of general use. Slag rubble and sand. Technical requirements. Introduced: 01.07.2015.
41. Liu Kuisheng, Zhang Zengqi, Sun Jianwei. Advances in understanding the alkali-activated metallurgical slag. Advances in Civil Engineering. 2021. Vol. 2021. 8795588. DOI: 10.1155/2021/8795588
42. GOST 32863–2014. Automobile roads of general use. Slag rubble. The definition of frost resistance. Introduced: 01.07.2015.
43. GOST 26633–2015. Heavy-weight and sand concretes. Specifications. Introduced: 01.09.2016.
44. GOST 30491–2012. Organomineral mixtures and soils stabilized by organic binders for road and airfield construction. Introduced: 01.11.2013.
45. Gu X., Tan H., He X., Smirnova O. et al. Utilization of carbide slag by wet grinding as an accelerator in calcium sulfoaluminate cement. Materials. 2020. Vol. 13, Iss. 20. DOI: 10.3390/ma13204526
46. Brichkin V. N., Vasiliev V. V., Bormotov I. S., Maksimova R. I. Production and recycling of limes in integrated mineral processing. Gornyi Zhurnal. 2021. No. 11. pp. 88–94.
47. Sokol D. G., Phuc L. Q., van Duy T. Safety improvement in recycle development headings in potash mines: Current problems and prospects. Mining Informational and Analytical Bulletin. 2020. Vol. 12. pp. 33–43. DOI: 10.25018/0236-1493-2020-12-0-33-43
48. Zaynullin L. A., Druzhinin G. M. Scientific Research Institute of Metallurgical Heat Engineering (JSC VNIIMT) is 90 years old. Stal. 2020. No. 5. pp. 2–6.

Language of full-text russian
Full content Buy
Back