Журналы →  Chernye Metally →  2024 →  №2 →  Назад

Metal Science and Metallography
Название Peculiarities of diffusion processes in explosion-welded bimetal steel 50Kh15М2F – steel 20 after high-temperature heating
DOI 10.17580/chm.2024.02.09
Автор L. M. Gurevich, V. N. Arisova, V. O. Kharlamov
Информация об авторе

Volgograd State Technical University, Volgograd, Russia
L. M. Gurevich, Dr. Eng., Associate Prof., Head of the Dept. of Materials Science and Composite Materials, e-mail: mv@vstu.ru
V. N. Arisova, Cand. Eng., Associate Prof., Dept. of Materials Science and Composite Materials
V. O. Kharlamov, Cand. Eng., Associate Prof., Dept. of Equipment and Welding Technology

Реферат

Abstract: The results of studies of the transformation of the structure of the near-weld zone of a two-layer explosion-welded composite material carbon steel 20 + alloyed martensitic corrosionresistant steel 50Cr15Mo2V after normalization at temperatures of 800–1100 °C and holding times from 1 to 20 hours are presented. It has been established that at 800 °C there is a "reverse" diffusion of carbon – from steel 20 with a lower concentration into steel 50Cr15Mo2V with the formation of a decarburized layer in steel 20. With a further increase in temperature, carbon atoms diffuse into steel 20 together with chromium atoms, changing the structure of the near-weld zone (an increase in the volume content of perlite and the formation of martensite in steel 50Cr15Mo2V). It is shown that the normalization of the bimetal steel 50Cr15Mo2V + steel 20 with an increase in exposure time to 5-20 hours at a temperature of 1000 ° C leads to the formation of a continuous diffusion decarburized zone. It has been established that the formed diffusion decarburized zone is characterized by a variable chromium content from 2 to 9 at.%. At exposure times up to 10 hours, the thickness of the diffusion decarburized zone increases, and with a further increase in the exposure time to 15-20 hours, it decreases. The complex nature of the change in the thickness of the light decarburized zone is explained by the different intensity of the three parallel diffusion processes of the carbide-forming elements.

Ключевые слова Explosion-welded bimetal, steel, normalization, diffusion, structure, decarburized zone
Библиографический список

1. Konon Yu. A., Pervukhin L. B., Chudnovsky A. D. Explosion welding. Moscow : Mashinostroenie, 1987. 216 p.
2. Kobelev A. G., Lysak V. I., Chernyshev V. N., Bykov A. A. et al. Production of metal layered composite materials. Moscow : Intermet Inzhiniring, 2002. 496 p.
3. Trykov Yu. P., Gurevich L. M., Arisova V. N. Diffusion in layered composites: monograph. Volgograd : VolgGTU, 2006. 402 p.
4. Trykov Yu. P., Shmorgun V. G. Properties and performance of layered composites : monograph. Volgograd : VolgGTU, 1999. 190 p.
5. Bataev I. A., Bataev A. A., Mali V. I., Burov V. G. et al. Formation and structure of vortex zones arising upon explosion welding of carbon steels. The Physics of Metals and Metallography. 2012. Vol. 113. pp. 233–240.
6. Shi Y., Wang J., Zhou X., Xue X. Post–fire properties of stainless–clad bimetallic steel produced by explosive welding process. Journal of Constructional Steel Research. 2023. Vol. 201. 107690. DOI: 10.1016/j.jcsr.2022.107690
7. Ning Luo, Hanliang Liang, Xin Sun, Xueru Fan et al. Research on the interfacial microstructure of three-layered stainless steel/Ti/low-carbon steel composite prepared by explosive welding. Composite Interfaces. 2021. Vol. 28, Iss. 6. pp. 609–624.
8. Ye C., Zhai W., Lu G. et al. Effect of secondary explosive welding on microstructure and mechanical properties of 10CrNi3MoV steel-based composite plates. Metall Mater. Trans. A. 2021. Vol. 52. pp. 1568–1573.
9. Kuz'min E. V., Lysak V. I., Kuz'min S. V., Korolev M. P. Influence of structure formation and properties of bimetal produced by ultrasound-assisted explosive welding. Journal of Manufacturing Processes. 2021. Vol. 71. pp. 734–742.
10. Gurevich L. M., Arisova V. N., Trudov A. F., Kharlamov V. O. Investigation of the structure and properties of a fivelayer titanium-steel explosion-welded composite material after technological stages. Chernye Metally. 2022. No. 8. pp. 53–59.
11. Hong Ma, Guoliang Qin, Peihao Geng, Fei Li et al. Microstructure characterization and properties of carbon steel to stainless steel dissimilar metal joint made by explosion welding. Materials and Design. 2015. Vol. 86. pp. 587–597.
12. Zamani E., Liaghat G. H. Explosive welding of stainless steel – carbon steel coaxial pipes. J. Mater. Sci. 2012. Vol. 47. pp. 685–695.
13. Kaya Y., Nizamettin K. An investigation into the explosive welding/cladding of Grade A ship steel/AISI 316L austenitic stainless steel. Mater. Des. 2013. Vol. 52. pp. 367–372.
14. Mendes R., Ribeiro J. B., Loureiro A. Effect of explosive characteristics on the explosive welding of stainless steel to carbon steel in cylindrical configuration. Mater. Des. 2013. Vol. 51. pp. 182–192.
15. Trykov Yu. P., Trudov A. F., Stepanishchev I. B. On increasing the stability of properties of layered composites. Izvestiya vuzov. Chernaya metallurgiya. 2002. No. 12. p. 62.
16. Trykov Yu. P., Trudov A. F., Stepanishchev I. B. Structure and properties of bimetal steel 50Kh15М2F + steel 09G2S, obtained by explosion welding. Izvestiya vuzov. Chernaya metallurgiya. 2003. No. 1. pp. 76, 77.
17. Trykov Yu. P., Trudov A. F., Arisova V. N. Study of the influence of heating on formation of fine structure of the carbon steel – stainless steel bimetal. Izvestiya VolgGTU. Seriya Problemy materialovedeniya, svarki i prochnosti v mashinostroenii. 2012. No. 9 (96). pp. 57–61.
18. Trudov A. F., Arisova V. N. Study of the influence of heat treatment modes on the structure and properties of explosion-welded bimetal 16G2S + 50Kh15M2F. Izvestiya VolgGTU. Seriya Problemy materialovedeniya, svarki i prochnosti v mashinostroenii. 2019. No. 4 (96). pp. 23–27.
19. Arisova V. N., Trykov Yu. P., Trudov A. F., Ponomareva I. A. Structure and properties of bimetals from steels 50Kh15М2F and 09G2S after technological stages. Uprochnyayushchie tekhnologii i pokrytiya. 2006. No. 12. pp. 43–46.
20. Shlyakhova G. V., Barannikova S. A., Bochkareva A. V., Lee Yu. V. et al. Study of the structure of structural carbon steel - stainless steel bimetal. Izvestiya vuzov. Chernaya metallurgiya. 2018. No. 61 (4). pp. 300–305.
21. Zhukhovitsky A. A., Shvartsman L. A. Physical chemistry. 5th edition, stereotyped. Moscow: Metallurgiya, 2001. 687 p.
22. GOST 1050–2013. Metal products from nonalloyed structural quality and special steels. General specification. Introduced: 01.01.2015.
23. GOST 5632–2014. Stainless steels and corrosion-resisting, heat-resisting and creep-resisting alloys. Grades. Introduced: 01.01.2015.
24. Lee С. G., Iijima Y., Hiratani T., Hirano K. Diffusion of chromium in α-iron. Materials Transactions. 1990. Vol. 31, Iss. 4. pp. 255–261.
25. Khudnev A. A., Plokhikh A. I., Dvoretskov R. M., Shchetanov B. V. Study of diffusion of alloying elements during cyclic heat treatment of a layered composite material based on chromium and carbon steels. Trudy VIAM. 2021. No. 4 (98). pp. 74–91.

Language of full-text русский
Полный текст статьи Получить
Назад