Название |
Automated ball charge control system for grinding units |
Информация об авторе |
Engineering Laboratory (Saint Petersburg, Russia)
Anufriev A. S., Development Director, a@ануфриев.рф
Empress Catherine II Saint Petersburg Mining University (St. Petersburg, Russia)
Lebedik E. A., Assistant Lecturer, Candidate of Engineering Sciences, ecaterinalebedik@yandex.ru
«Karelsky Okatysh» JSC (Kostomuksha, Russia)
Smirnov A. A., Deputy Head of the Concentrate and Pellets Production Department for Operations, smirn0ffaa@yandex.ru |
Библиографический список |
1. Zhukovskiy Yu. L., Korolev N. A., Malkova Ya. M. Monitoring of grinding condition in drum mills based on resulting shaft torque. Zapiski Gornogo Instituta. 2022. Vol. 256. pp. 686–700. 2. Zhukovskiy Yu. L., Malkova Ya. M. Classification of ways to improve the efficiency of the comminution and implementation of energy-efficient algorithms for controlling the twin-motor electric mill drive. Gornoye Oborudovanie i Elektromekhanika. 2022. No. 4. pp. 20–35. 3. Huang G., Pan J., Xia Zh., et al. Efficient preparation and characterization of graphene based on ball milling. Diamond and Related Materials. 2022. Vol. 130. DOI: 10.1016/j.diamond.2022.109438 4. Yu J., Qin Yo., Gao P., Han Yu., Li Ya. An innovative approach for determining the grinding media system of ball mill based on grinding kinetics and linear superposition principle. Powder Technology. 2021. Vol. 378. pp. 172–181. 5. Pelevin A. E. Iron ore beneficiation technologies in Russia and ways to improve their efficiency. Zapiski Gornogo Instituta. 2022. Vol. 256. pp. 579–592. 6. Mhadhbi M. Modelling of the high-energy ball milling process. Advances in Materials Physics and Chemistry. 2021. Vol. 11, No. 1. pp. 31–44. 7. Zhou W., Han Y., Li Ya., Yang J., Ma Sh., Sun Yo. Research on prediction model of ore grinding particle size distribution. Journal of Dispersion Science and Technology. 2019. Vol. 41, No. 4. DOI: 10.1080/01932691.2019.1592688 8. De Oliveira A. L. R., Tavares L. M. Modeling and simulation of continuous open circuit dry grinding in a pilotscale ball mill using Austin's and Nomura's models. Powder Technology. 2018. Vol. 340. pp. 77–87. 9. Morrell S. Modelling the influence on power draw of the slurry phase in autogenous (AG), semi-autogenous (SAG) and ball mills. Minerals Engineering. Vol. 89. pp. 148–156. 10. Mukhitdinov D. P., Boybutayev S. Problems of modeling and control of the technological process of ore grinding. Chemical Technology, Control and Management. 2021. Vol. 2021, No. 4. pp. 49–62. 11. Lee H., Kim K., Lee H. Analysis of grinding kinetics in a laboratory ball mill using population-balance-model and discrete-element-method. Advanced Powder Technology. 2019. Vol. 30, No. 11. pp. 2517–2526. 12. Li Ya., Bao J., Chen T., Yu A., Yang R. Prediction of ball milling performance by a convolutional neural network model and transfer learning. Powder Technology. 2022. Vol. 403. DOI: 10.1016/j.powtec.2022.117409 13. Wang J., Zou B., Liu M., Li Yi., Ding H., Xue K. Milling force prediction model based on transfer learning and neural network. Journal of Intelligent Manufacturing. 2020. Vol. 32. pp. 947–956. 14. Xie C., Zhao Y., Song T., Zhao Y. Investigation of the effect of filling level on the wear and vibration of a SAG mill by DEM. Particuology. 2022. Vol. 63. pp. 24–34. 15. Jayasundara C. T., Zhu H. P. Impact energy of particles in ball mills based on DEM simulations and data-driven approach. Powder Technology. 2022. Vol. 395. pp. 226–234. 16. Hilden M. M., Powell M. S., Yahyaei M. An improved method for grinding mill filling measurement and the estimation of load volume and mass. Minerals Engineering. 2021. Vol. 160. DOI: 10.1016/j.mineng.2020.106638 17. Liao Ya., Ragai I., Huang Z., Kerner S. Manufacturing process monitoring using time-frequency representation and transfer learning of deep neural networks. Journal of Manufacturing Processes. 2021. Vol. 68. pp. 231–248. 18. Tang J., Yan G., Liu Zh., Liu Ye., Yu G. Experimental analysis of wet mill load parameter based on multiple channel mechanical signals under multiple grinding conditions. Minerals Engineering. 2020. Vol. 159. DOI: 10.1016/j.mineng.2020.106609 19. Li Y., Bao J., Yu A., Yang A. ANN prediction of particle flow characteristics in a drum based on synthetic acoustic signals from DEM simulations. Chemical Engineering Science. 2021. Vol. 246. DOI: 10.1016/j.ces.2021.117012 20. Pérez-García E. M., Bouchard J., Poulin É. Systematic calibration of a simulated semi-autogenous/ball-mill grinding circuit. IFAC-PapersOnLine. 2020. Vol. 53, Iss. 2. pp. 12026–12031. 21. Chitalov L. S., Lvov V. V. Comparative assessment of the Bond ball mill work index tests. Gornyi Informatsionnoanaliticheskiy Byulleten'. 2021. No. 1. pp. 130–145. 22. Golik V. I., Dmitrak Yu. V. Interaction of ball loading of bodies with material in mills. Vektor GeoNauk. 2021. Vol. 4, No. 1. pp. 20–27. 23. Petrakis E., Komnitsas K. Effect of energy input in a ball mill on dimensional properties of grinding products. Mining, Metallurgy & Exploration. 2019. Vol. 36, No. 4. pp. 803–816. 24. Deniz V. The effects of ball filling and ball diameter on kinetic breakage parameters of barite powder. Powder Technology. 2012. Vol. 23, No. 5. pp. 640–646. 25. Bortnowski P., Gładysiewicz L., Król R., Ozdoba M. Energy efficiency analysis of copper ore ball mill drive systems. Energies. 2021. Vol. 14, No. 6. DOI: 10.3390/en14061786 26. Liu B., Hao D., Gao X. Research on data driven modeling method of grinding process based on RBF neural network. Chinese control and decision conference (CCDC). 2019. pp. 5205–5209. 27. Guo X., Yan F., Pang Y., Yan G. Soft sensor for ball mill load based on multi-view domain adaptation learning. Chinese control and decision conference (CCDC). 2019. pp. 6082–6087. 28. Huang P., Guo J., Sang G., Miao Q. Soft measurement of ball mill load under variable working conditions based on deep transfer learning. Measurement Science and Technology. 2022. Vol. 33, No. 7. DOI: 10.1088/1361-6501/ac5c92 |