Информация об авторе |
NorNickel’s Polar Division, Norilsk, Russia
T. P. Darbinyan, Director, Department of Mining Practice, Candidate of Engineering Sciences
Geotechnique Laboratory, Gipronickel Institute, Saint-Petersburg, Russia A. V. Fedoseev, Leading Researcher, Candidate of Engineering Sciences, FedoseevAV@nornik.ru A. V. Yavarov, Leading Researcher, Candidate of Engineering Sciences P. A. Tyapkina, Category III Engineer |
Реферат |
The world practice says that the main estimate of seismic effect generated by a blasting wave capable to damage engineering structures is the peak particle velocity (PPV) of vibrations induced in ground under the structures. This parameter is a criterion of seismic safety for various guarded facilities (buildings, structures, rock masses, slopes, equipment, etc.) since PPV correlates better than displacements or accelerations with the data of observations over initiation and growth of structural defects. The international experience gained in prediction and estimation of blasting-induced seismic effect on guarded facilities is reviewed. In accordance with the domestic and foreign approaches, the output data of experimental measurements are compared for the parameters of energy velocity (by Sadovsky) VSad, maximal vector sum PVSmax and maximum PPVmax along one of the coordinate axes. The comparison of the allowable explosive charge weights per delay stages, calculated using each of the procedures, revealed the significant differences between them, up to an order of magnitude. At the same time, the results obtained using the commonly used energy velocity VSad and the cube root of the charge weight are comparable with the weight of explosives for a whole blasting block. It is mentioned that the regulatory documents in Russia lack recommendations on PPV prediction depending on explosive charge weight, frequency content, free frequencies of buildings and structures and their distances to a blasting site. It is necessary to elaborate a standard to regulate procedures for the blasting-induced seismic wave attenuation and to limit blasting-induced effects for a wide list of facilities (buildings, structures, equipment, underground roadways, tunnels and slopes) with regard to the level of their damage. |
Библиографический список |
1. Siskind D. E., Stagg M. S., Kopp J. W., Dowding C. H. Structural Response and Damage Produced by Ground Vibration From Surface Mine Blasting : Report of Investigations 8507. Series: United States. Washington : Bureau of Mines, 1980. 84 p. 2. AS 2187.2–2006. Explosives—Storage and use. Part 2: Use of explosives. Sydney : Standards Aus tralia, 2006. 10 p. 3. BS 6472-2:2008. Guide to evaluation of human exposure to vibration in buildings. Blast-induced vibration. London : British Standards Institution, 2008. 24 p. 4. BS 7385-2:1993. Evaluation and measurement for vibration in buildings. Part 2: Guide to damage levels from groundborne vibration. London : British Standards Institution, 1993. 16 p. 5. DIN 4150-1:2022-01. Erschütterungen im Bauwesen. Teil1: Vorermittlung von Schwingungsgrößen. Berlin : Deutsches Institut für Normung, 2022. 55 s. 6. DIN 4150-3:2016-12. Erschütterungen im Bauwesen. Teil 3. Einwirkungen auf bauliche Anlagen. Berlin : Deutsches Institut für Normung, 2016. 23 s. 7. ISO 4866:2010. Mechanical vibration and shock. Vibration of fixed structures. Guidelines for the measurement of vibrations and evaluation of their effects on structures. Geneva : International Organization for Standardization, 2010. 40 p. 8. GOST R 52892–2007. Vibration and shock. Vibration of buildings. Measurement of vibration and evaluation of its effects on structure. Moscow : Standartinform, 2008. 20 p. 9. NS 8141-1:2022. Vibrasjoner og støt—Veiledende grenseverdier for bygge-og anleggsvirksomhet, bergverk og trafikk. Del 1: Virkning av vibrasjoner og lufttrykkstøt på byggverk, inkludert tunneler og bergrom. Oslo : Standard Norge, 2022. 10. Dowding C. H. Suggested method for blast vibration monitoring. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts. 1992. Vol 29, Iss. 2. pp. 145–156. 11. GB 6722–2014. Safety regulations for blasting. Beijing : The Standardization Administration of the People’s Republic of China, 2014. 60 p. 12. SNI 7571:2010. Baku tingkat getaran peledakan pada kegiatan tambang terbuka terhadap bangunan. – Jakarta : Badan Standardisasi Nasional, 2010. 5 p. 13. DGMS (Tech) S&T Circular No. 7. Damage of structures due to blast induced ground vibrations in the mining areas. Dhanbad, 1997. Available at: https://www.cmpdi.co.in/sites/default/files/2022-11/1997%20(7)%20circular.pdf (accessed: 31.01.2024). 14. UNE 22-381-93. Control de vibraciones producidas por voladuras. Madrid : Asociación Española de Normalización y Certificación, 1993. 12 p. 15. NP 2074:2015. Avaliação da Influência de vibrações impulsivas em estruturas. Caparica : Instituto Português da Qualidade, 2015. 16. SS 460 4866:2011. Vibration och stöt—Riktvärden för sprängningsinducerade vibrationer i byggnader. Stockholm : Swedish Standards Institute, 2011. 17. Persson P. A., Holmberg R., Lee J. Rock Blasting and Explosives Engineering. Boca Raton : CRC Press, 1994. 560 p. 18. Medvedev S. V. Seismic survey of mining blasts. Moscow : Nedra, 1964. 188 p. 19. Tseytlin Ya. I., Smoliy N. I. Seismic wave and air vibration of industrial blasts. Moscow : Nedra, 1981. 192 p. 20. Sadovsky M. A. Geophysics and physics of explosion: Selectals. Moscow : Nauka, 2004. 439 p. 21. Menshikov P. V., Taranzhin S. S., Flyagin A. S. Research of seismic infuence on buildings and structures of Satka town while exploding explosive works on the Karagayskiy career in constrained conditions. MIAB. 2020. No. 3-1. pp. 383–398. 22. Verkholantsev A. V., Dyagilev R. A., Shulakov D. Yu., Shkurko A. V. Monitoring of earthquake loads from blasting in the Shakhtau open pit mine. Journal of Mining Science. 2019. Vol. 55, Iss. 2. pp. 229–238. 23. Zharikov S. N., Bersenev G. P., Kutuev V. A., Flyagin A. S. Scientific research on seismic effect of explosion at underground gas pipeline of high pressure. Problemy nedropolzovaniya. 2019. No. 3. pp. 145–154. 24. Vasilets V. V., Afanasev P. I., Pavlovich A. A. Safe operation of mining-and-transport system under impact of seismic shot waves. MIAB. 2020. No. 1. pp. 26–35. 25. Novinkov A. G., Protasov S. I., Samusev P. A. Experience in managing earthquake safety of mass explosions. Vestnik Nauchnogo tsentra VostNII po promyshlennoy i ekologicheskoy bezopasnosti. 2019. No. 3. pp. 45–53. 26. Mosinets V. N. Crushing and seismic action of blast in rocks. Moscow : Nedra, 1976. 271 p. 27. Wang Y.-Q., Gong L.-J., An N. N., Peng X.-B. , Wang W. et al. Field Investigation of Blasting-Induced Vibration in Concrete Linings during Expansion of Old Highway Tunnel. Advances in Civil Engineering. 2021. Vol. 2021. ID 8820544. 28. Yin T., Zhou С., Zheng С., Fu J., Guo Z. The vibration characteristics of ground of rock blasting in silt-rock strata. Shock and Vibration. 2021. Vol. 2021. ID 3318965. 29. Wang W., Yuan Q., Jiang H., Chen P. S. Influence and safety control of blasting vibration on existing lining for closely tunnel expansion. IOP Conference Series: Earth and Environmental Science. 2019. Vol. 351. ID 012043. 30. Wang Z., Yang J., Zhang T., Yao C., Zhang X. et al. PPV and frequency characteristics of tunnel blast-induced vibrations on tunnel surfaces and tunnel entrance slope faces. Shock and Vibration. 2021. Vol. 2021. ID 5527115. 31. Bottelin P., Baillet L., Mathy A., Garnier L., Cadet H. et al. Seismic study of soda straws exposed to nearby blasting vibrations. Journal of Seismology. 2020. Vol. 24, Iss. 3. pp. 573–593. 32. Gonen A. Investigation of fault effect on blast‐induced vibration. Applied Sciences. 2022. Vol. 12, Iss. 5. ID 2278. 33. Erten O., Konak G., Kizil M. S., Onur A. H., Karakus D. Analysis of quarry-blastinduced ground vibrations to mitigate their adverse effects on nearby structures. International Journal of Mining and Mineral Engineering. 2009. Vol. 1, No. 4. pp. 313–326. 34. Rupert G. B., Clark G. B. Criteria for the proximity of surface blasting to underground coal mines. Proceedings of 18th US Symposium on Rock Mech anics. Keystone, 1977. 35. Report of Relating Surface Coal Mine Scaled Distances to Deep Mine Roof Peak Particles Velocities. Nitro : West Virginia Department of Environmental Protection Office of Explosives and Blasting, 2007. 35 p. 36. Sołtys A. Firing explosive charges with millisecond delay in surface mining—Historical outline. Inżynieria Mineralna. 2018. Vol. 42, Iss. 2. pp. 177–190. 37. Sołtys A., Pyra J., Twardosz M. Control of the vibration structure induced during works with the use of explosives. Technical Transactions. 2018. Vol. 6. pp. 113–125. 38. Siskind D. E., Stachura V. J., Nutting M. J. Low-frequency vibrations produced by surface mine blasting over abandoned underground mines : Report of Investigations 9078. Washington : US Department of the Interior, 1987. 58 p. 39. Duvall W. I., Johnson C. F., Mayer A. V .C., Devine J. F. Vibrations from instantaneous and millisecond-delayed quarry blast : Report of Investigations 6151. Washington : US Department of the Interior, 1963. 34 p. 40. Wiss J. F. Control of vibrations and blast noise from surface coal mining : Final Report. Washington : US Department of the Interior, 1978. Vol. 2. 2 84 p. 41. Siskind D. E., Crum S. V., Otterness R. E., Kopp J. W. Comparative Study of Blasting Vibrations From Indiana Surface Coal Mines : Report of Investigations 9226. Washington : US Department of the Interior, 1989. 41 p. 42. Available at: https://docs.cntd.ru/document/573219717 (accessed: 15.12.2023). 43. Kozyrev S. A., Vlasova E. A., Sokolov A. V., Usachev E. A. Evaluation of the efficient application of Iskra-T electronic initiating devices in terms of crushing and seismic action of face blasts. Gornaya promyshlennost. 2021. No. 2. pp. 107–113. 44. Bagdasarov A. G., Davydov S. A., Donskoy M. G., Kritskiy V. G., Strausman R. Ya. Technical regulations of blasting in construction in power-generation industry. Moscow : Energiya, 1967. 208 p. |