Журналы →  Цветные металлы →  2024 →  №4 →  Назад

Материаловедение
Название Аддитивные технологии получения сплавов на основе алюминидов титана
DOI 10.17580/tsm.2024.04.08
Автор Илларионов А. Г., Попов А. А., Шабанов М. А., Степанов С. И.
Информация об авторе

ФГАОУ ВО «Уральский федеральный университет имени первого Президента России Б. Н. Ельцина» (УрФУ), Екатеринбург, Россия

А. Г. Илларионов, доцент кафедры термообработки и физики металлов, канд. техн. наук, эл. почта: a.g.illarionov@urfu.ru
А. А. Попов, заведующий кафедрой термообработки и физики металлов, докт. техн. наук, эл. почта: a.a.popov@urfu.ru
М. А. Шабанов, аспирант кафедры термообработки и физики металлов, эл. почта: m.a.shabanov@urfu.ru
С. И. Степанов, доцент кафедры термообработки и физики металлов, канд. техн. наук, эл. почта: s.i.stepanov@urfu.ru

Реферат

Жаропрочные сплавы на основе алюминидов титана Ti2AlNb и TiAl способны составить конкуренцию жаропрочным никелевым сплавам при температурах эксплуатации до 750 оС за счет низкой плотности. Однако при получении сплавов на основе TiAl и Ti2AlNb традиционными методами возникают проблемы, связанные с их ограниченной технологичностью из-за низких характеристик пластичности, ударной вязкости, особенно при пониженных температурах, а также из-за развития ликвационных процессов. Снятие ряда указанных проблем возможно при синтезе этих сплавов аддитивными методами 3D-печати. Авторы проанализировали имеющиеся в литературе данные об аддитивных методах получения жаропрочных сплавов на основе алюминидов титана Ti2AlNb и TiAl. Представили классификацию аддитивных технологий получения металлических материалов на основе международного стандарта EN ISO/ASTM 52900–2021. Провели критический анализ технологических возможностей различных аддитивных методов получения жаропрочных сплавов титана, включая перспективные гибридные технологии. Рассмотрели возможности получения комплекса механических свойств за счет формирования заданного структурного состоя ния непосредственно в процессе 3D-печати или в процессе термической постобработки. Сфор мулировали ключевые проблемы и предложили направления совершенствования аддитивных технологий для получения рабочих свойств изделий из сплавов на основе интерметаллидов титана.
Исследование выполнено при финансовой поддержке гранта Российского научного фонда № 22-49-02066. URL: https://rscf.ru/project/ 22-49-02066/.

Ключевые слова Сплавы на основе орторомбического интерметаллида титана Ti2AlNb, О-сплавы, γ-сплавы, аддитивные технологии, свойства, способы получения, обработка
Библиографический список

1. Kroll W. J. The production of ductile titanium. Transactions of the American Electrochemical Society. 1940. Vol. 78. pp. 35–47.

2. Solonina O. P., Glazunov S. G. Heat-resistant titanium alloys. Moscow : Metallurgiya, 1976. 448 p.
3. Ilin A. A., Kolachev B. A., Polkin I. S. Titanium alloys. Composition, structure, properties. Reference book. Moscow : VILS, 2009. 520 p.
4. Kolachev B. A., Elagin V. I., Livanov V. A. Metal science and heat treatment of non-ferrous metals and alloys. Moscow : MISIS, 1999. 416 p.
5. Goldshtein M. I., Grachev S. V., Veksler Yu. G. Special steels. Moscow : MISIS, 1990. 408 p.
6. Kumpfert J. Intermetallic alloys based on orthorhombic titanium aluminide. Advanced Engineering Materials. 2001. Vol. 3, No. 11. pp. 8511–864.
7. Christoph Leyens, Manfred Peters. Titanium and titanium alloys: fundamentals and applications. Wiley-VCH, 2003. 532 p.
8. Chen W., Li J. W., Xu L., Lu B. Development of Ti2AlNb alloys: opportunities and challenges. Advanced Materials & Processes. 2014. Vol. 172, No. 5. pp. 23–27.
9. Chen W., Li Z. Additive manufacturing of titanium aluminides. In: Froes F., Boyer R. B. T.-A. M. for the A.I. Elsevier. 2019. No. 11. pp. 235–263.
10. GOST R 57558–2017. Additive manufacturing processes. General principles. Part 1. Terminology. Introduced: 01.12.2007.
11. Pragana J. P. M., Sampaio R. F. V., Bragança I. M. F., Silva C. M. A. et al. Hybrid metal additive manufacturing: a state-of-the-art review. Advances in Industrial and Manufacturing Engineering. 2021. No. 2. 100032.
12. Polozov I., Sufiiarov V., Shamshurin A. Synthesis of titanium orthorhombic alloy using binder jetting additive manufacturing. Materials Letters. 2019. No. 243. pp. 88–91.
13. Illarionov A. G., Stepanov S. I., Naschetnikova I. A., Popov A. A. et al. Additive manufacturing of intermetallic alloys based on orthorhombic titanium aluminide Ti2AlNb. Materials. 2023. Vol. 16, No. 991. 31 p.
14. Anil Emiralioglu, Rahmi Unal. Additive manufacturing of gamma titanium aluminide alloys: a review. Journal of Materials Science. 2022. Vol. 57. pp. 4441–4466.
15. Fidan I., Huseynov O., Ali M. A., Alkunte S. et al. Recent inventions in additive manufacturing: holistic review. Inventions. 2023. Vol. 8, No. 103. 45 p.
16. Zhang S., Xi M., Liu R., Li M. et al. Fabricating Ti – 22 Al – 25 Nb intermetallic with ductility higher than 25% by advanced printing technique: Point-forging and laser-deposition. Materials Science & Engineering A. 2022. No. 850. 143520.
17. Tang Y. J., Zhang Y. Z., Liu Y. T. Numerical and experimental investigation of laser additive manufactured Ti2AlNb-based alloy. Journal of Alloys Compounds. 2017. Vol. 727. pp. 196–204.
18. Zhou Y. H., Li W. P., Wang D. W., Zhang, L. et al. Selective laser melting enabled additive manufacturing of Ti – 22 Al – 25 Nb intermetallic: excellent combination of strength and ductility, and unique microstructural features associated. Acta Mater. 2019. Vol. 173. pp. 117–129.
19. Polozov I., Sufiiarov V., Kantyukov A., Razumov N. et al. Microstructure, densification, and mechanical properties of titanium intermetallic alloy manufactured by laser powder bed fusion additive manufacturing with hightemperature preheating using gas atomized and mechanically alloyed plasma spheroidized powder. Additive Manufacturing. 2020. Vol. 34. 101374.
20. Yang X., Zhang B., Bai Q., Xie G. Correlation of microstructure and mechanical properties of Ti2AlNb manufactured by SLM and heat treatment. Intermetallics. 2021. Vol. 139. 107367.
21. Zhang K.-Z., Lei Z.-L., Chen Y.-B., Yang K. et al. Microstructural evolution and numerical simulation of laser-welded Ti2AlNb joints under different heat inputs. Rare Metals. 2020. Vol. 40. pp. 2143–2153.
22. Banerjee D., Gogia A. K., Nandi T. K., Joshi V. A. A new ordered orthorhombic phase in a Ti3AlNb alloy. Acta Metall. 1988. Vol. 36. pp. 871–882.
23. Che Q., He W., Li H., Cheng K. et al. Microstructure and property of Ti2AlNb alloy by selective electron beam melting. Journal of Materials Engineering. Vol. 50. pp. 156–164.
24. Murr L. E., Martinez E., Amato K. N., Gaytan S. M. et al. Fabrication of metal and alloy components by additive manufacturing: examples of 3D materials science. Journal of Materials Research and Technology. 2012. Vol. 1. pp. 42–54.
25. Frazier W. E. Metal additive manufacturing: a review. Journal of Materials Engineering and Performance. 2014. Vol. 23, No. 6. pp. 1917–1928.
26. GOST R 70242–2022. Additive technologies. Manufacturing of metal parts by directed energy deposition. General recommendations for design and manufacture. Introduced: 01.12.2022.
27. Zhou Y. H., Li W. P., Zhang L., Zhou S. Y. et al. Selective laser melting of Ti – 22 Al – 25 Nb intermetallic: significant effects of hatch distance on microstructural features and mechanical properties. Journal of Materials Processing Technology. 2020. Vol. 276. 116398.
28. Li Z., Cui Y., Wang L., Zhang H. et al. An investigation into Ti – 22 Al – 25 Nb in-situ fabricated by electron beam freeform fabrication with an innovative twin-wire parallel feeding method. Additive Manufacturing. 2022. Vol. 50. 102552.
29. Löber L., Schimansky F. P., Kühn U., Pyczak F. et al. Selective laser melting of a beta-solidifying TNM–B1 titanium aluminide alloy. Journal of Materials Processing Technology. 2014. Vol. 214, No. 9. pp. 1852–1860.
30. Afroz L., Inverarity S. B., Qian M., Easton M. et al. Analysing the effect of defects on stress concentration and fatigue life of L-PBF AlSi10Mg alloy using finite element modeling. Progress in Additive Manufacturing. 2023. 19 p.
31. DebRoy T., Wei H. L., Zuback J. S., Mukherjee T. et al. Additive manufacturing of metallic components – process, structure and properties. Progress in Materials Science. 2018. Vol. 92. pp. 112–224.
32. Barroqueiro B., Andrade-Campos A., Valente R. A. F., Neto V. Metal additive manufacturing cycle in aerospace industry: a comprehensive review. Journal of Manufacturing Processe. Vol. 3, No. 52. pp. 1–21.
33. Zhou Y. H., Li W. P., Wang D. W., Zhang L. et al. Selective laser melting enabled additive manufacturing of Ti – 22 Al – 25 Nb intermetallic: Excellent combination of strength and ductility, and unique microstructural features associated. Acta Materialia. 2019. Vol. 173. pp. 117–129.
34. Vogelpoth A., Schleifenbaum J. H., Rittinghaus S. Laser additive manufacturing of titanium aluminides for turbomachinery applications. ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition, 2019. No. GT2019-90947, V006T24A011. 10 p.
35. Lin B., Chen W., Yang Y., Wu F. et al. Anisotropy of microstructure and tensile properties of Ti – 48 Al – 2 Cr – 2 Nb fabricated by electron beam melting. Journal of Alloys and Compounds. 2020. Vol. 830, No. 7. 154684.
36. Thomas M., Malot T., Aubry P. Laser metal deposition of the intermetallic TiAl Alloy. Metallurgical and Materials Transactions A. 2017. Vol. 48. pp. 3143–3158.
37. Jiantao L., Xin L., Xiaowei L., Jing, C. et al. Research on laser solid forming of a functionally gradient Ti – Ti2AlNb alloy. Acta Metall. Sin. 2008. Vol. 44. pp. 1006–1012.
38. Chen H., Liu Z., Cheng X., Zou Y. Laser deposition of graded γ-TiAl/ Ti2AlNb alloys: microstructure and nanomechanical characterization of the transition zone. Journal of Alloys and Compounds. 2021. Vol. 875. 159946.
39. Li Z., Chang B., Cui Y., Zhang H. et al. Effect of twin-wire feeding methods on the in-situ synthesis of electron beam fabricated Ti – Al – Nb intermetallics. Materials & Design. 2022. Vol. 215. 110509.
40. Anderson I. E., White E. M. H., Dehoff R. Feedstock powder processing research needs for additive manufacturing development. Current Opinion in Solid State & Materials Science. 2018. Vol. 22, No. 1. pp. 8–15.
41. Wu D., Yu C., Wang Q. et al. Synchronous-hammer-forging-assisted laser directed energy deposition additive manufacturing of high-performance 316L samples. Journal of Materials Processing Technology. 2022. Vol. 307. 117695.
42. Kenel C., Dasargyri G., Bauer T., Colella A. et al. Selective laser melting of an oxide dispersion strengthened (ODS) -TiAl alloy towards production of complex structures. Materials & Design. 2017. Vol. 134. pp. 81–90.
43. Robinson J., Ashton I., Fox P., Jones E. et al. Determination of the effect of scan strategy on residual stress in laser powder bed fusion additive manufacturing. Additive Manufacturing. 2018. Vol. 23. pp. 13–24.
44. Zhang Y. Z., Liu Y. T., Zhao X. H., Tang Y. J. The interface microstructure and tensile properties of direct energy deposited TC11/Ti2AlNb dual alloy. Materials & Design. 2016. Vol. 110. pp. 571–580.

Language of full-text русский
Полный текст статьи Получить
Назад