Journals →  Obogashchenie Rud →  2024 →  #2 →  Back

COMPLEX RAW MATERIAL UTILIZATION
ArticleName Prospects for the use of gravity concentrati on methods in nepheline concentrate production processes
DOI 10.17580/or.2024.02.06
ArticleAuthor Fomin A. V.
ArticleAuthorData

Mining Institute, Kola Science Centre, RAS (Apatity, Russia)

Fomin A. V., Senior Researcher, Candidate of Engineering Sciences, fomin5-49@mail.ru

Abstract

This article presents the results of technological laboratory studies aimed at assessing the feasibility of using gravity concentration methods to isolate nepheline concentrate from apatite flotation tailings obtained in the processing of ores from the Khibiny deposits. The material composition features identified for a sample of this material and the final processing products suggests that gravity concentration of the initial feed is facilitated by separating titanite particles, pyroxenes, and amphiboles into the heavy fraction and nepheline into the light fraction. Effective gravity concentration of the initial feed is hindered by the small difference in densities between the valuable mineral and the waste rock, as well as by the presence of feldspars and a number of other rock-forming minerals in the feed, with densities comparable to or lower than the density of nepheline. A series of technological experiments have confirmed the fundamental feasibility of using the processing methods considered to obtain nepheline concentrate. It has been established that it is difficult to obtain a high-grade concentrate from the feed using gravity concentration methods exclusively. Various gravity concentration options, based on spiral separation, have been proposed for obtaining crude nepheline concentrate from apatite flotation tailings. These produce a concentrate with a mass fraction of Al2O3 of 25.2–25.8 % and a total recovery of 75.8–77.9 %. The standard grade for this concentrate may then be ensured through final treatment by flotation methods. Implementation of the proposed process solutions using resourcesaving gravity concentrate methods will improve nepheline flotation feed grades while simultaneously reducing the flotation time. This will contribute to stable yields of high-grade nepheline concentrates from low-grade refractory mineral raw materials of variable compositions.

keywords Apatite tailings, nepheline concentrate, aluminum, gravity concentration, screw separation, table concentration
References

1. Savaley V. V. The transport and logistics complex of Russia at the first stage of sanctions restrictions. Territoriya Novykh Vozmozhnostey. Vestnik Vladivostokskogo Gosudarstvennogo Universiteta Ekonomiki i Servisa. 2022. Vol. 14, No. 4. pp. 7–22.
2. Sizyakov V. М., Nazarov Yu. P., Brichkin V. N., Sizyakova E. V. Processing of aged dumped tailings of apatitenepheline ores flotation. Obogashchenie Rud. 2016. No. 2. pp. 33–39.
3. Sentemova V. A. The technology of nepheline concentrate obtaining. Gornyi Zhurnal. 2011. No. 2. pp. 39–42.
4. Alzahrani A. S. Syntheses and characterization of twofold nepheline-combeite glass-ceramics for dental application. Journal of Non-Crystalline Solids. 2022. Vol. 596. DOI: 10.1016/j.jnoncrysol.2022.121877
5. Lee H., Lee J., Chung W. J., Im W. B. Modifying the composition of oxyfluoride glass-ceramics containing Eu2+-doped nepheline and LaF3 crystals for white LED. Optical Materials. 2023. Vol. 137. DOI: 10.1016/j.optmat.2023.113550
6. Elmaghraby M. S., Ismail A. I., Ghabrial D. S., El-Shakour Z. A. Effect of nepheline syenite additives on the technological behavior of ceramics and porcelain stoneware tiles. Silicon. 2019. Vol. 12, Iss. 5. pp. 1125–1136.
7. Mukhina T. N. Improving the efficiency of reverse flotation of nepheline using high-molecular alkylbenzenesulfonates: abstract of the diss. for the degree of Candidate of Engineering Sciences. St. Petersburg, SPSMI named after G. V. Plekhanov. 2004. 24 p.
8. Lygach V. N., Ladygina G. V., Brylyakov Yu. E., Kostrova M. A. Increasing the efficiency of nepheline production at ANOF-II of Apatit JSC by improving the reagent regime of nepheline reverse flotation. Gornyi Informatsionno-analiticheskiy Byulleten'. 2007. No. 10. pp. 365–369.
9. Mitrofanova G. V., Marchevskaya V. V., Perunkova T. N. Optimized regimes of nepheline flotation using stockpiled apatite-nepheline processing waste (the Khibiny deposits). Tsvetnye Metally. 2022. No. 8. pp. 8–14.
10. Artemev A. V., Veselova E. G., Nikitina I. V., Mitrofanova G. V. Recovery of nepheline from apatite flotation tailings of apatite-nepheline complex mineral composed ores. Geolinks Conference Proceedings. 2021. Vol. 3, Bk. 2. pp. 159–166.
11. Nikitina I. V., Taran A. E., Perunkova T. N., Mitrofanova G. V. Stimulation of flotation of rebellious apatite–nepheline ore with selective collecting agents. Gornyi Informatsionno-analiticheskiy Byulleten'. 2021. No. 11. pp. 95–108.
12. Guryev A. A. Sustainable development of crude ore resources and benefication facilities of JSC «Apatit» based on best engineering solutions. Zapiski Gornogo Instituta. 2017. Vol. 228. pp. 662–673.
13. Elbendary A. M., Aleksandrova T. N., Nikolaeva N. V. Optimizing reagent regime in apatite–nepheline ore processing. Gornyi Informatsionno-analiticheskiy Byulleten'. 2020. No. 10. pp. 123–132.
14. Chernousenko E. V., Perunkova T. N., Artemiev A. V., Mitrofanova G. V. Improvement of flotation technologies for the Kola Peninsula ore. Gornyi Zhurnal. 2020. No. 9. pp. 66–72.
15. Lvov V. V., Ushakov E. K. Possibility analysis of nonconforming nepheline concentrate magnetic separation. Modern educational technologies in the training of specialists for the mineral resource complex. Proc. of the II All-Russian scientific conference. St. Petersburg: SPMU, 2018. pp. 940–945.
16. Mezenin A. O., Tasina Т. I., Ierusalimtsev V. A. Overview and comparative assessment of promising technologies for processing of nepheline raw materials with a view to produce alumina. Obogashchenie Rud. 2016. No. 3. pp. 14–21.
17. Pelevin A. E. Magnetic and electrical beneficiation methods. Magnetic beneficiation methods. Ekaterinburg: USMU, 2018. 296 p.
18. Shadrunova I. V., Gorlova O. E., Zhilina V. A. The new paradigm of an environmentally-driven resource-saving technologies for processing of mining. IOP Conference Series: Materials Science and Engineering. 2019. Vol. 687, Iss. 6. DOI: 10.1088/1757-899X/687/6/066048
19. Marchevskaya V. V., Mukhina T. N. Resource-saving technology for nepheline concentrate production from highsilica raw material. Fiziko-tekhnicheskie Problemy Razrabotki Poleznykh Iskopayemykh. 2022. No. 4. pp. 108–117.
20. Tortseva Yu. S., Mironenko A. A., Fedorov I. S., Vasil'ev S. V. Use of the ICDD PDF-2 database for the X-ray diffraction analysis. Yadernaya Fizika i Inzhiniring. 2017. Vol. 8, No. 1. pp. 48–51.
21. Prokopiev S. A., Prokopiev E. S., Emelyanova K. K., Napolskikh S. A. High-quality magnetite–hematite concentrate production by spiral separation. Gornyi Zhurnal. 2021. No. 6. pp. 86–90.
22. Akbari Hoss., Noaparast M., Shafaei S. Z., Hajati A., Aghazadeh S., Akbari Hass. A beneficiation study on a low grade iron ore by gravity and magnetic separation. Russian Journal of Non-Ferrous Metals. 2018. Vol. 59, Iss. 4. pp. 353–363.
23. Rodrigues A. F., Delboni Junior H., Rodrigues O. M., Zhou J., Galvin K. P. Gravity separation of fine itabirite iron ore using the Reflux Classifier – Part I – Investigation of continuous steady state separations across a wide range of parameters. Minerals Engineering. 2023. Vol. 201. DOI: 10.1016/j.mineng.2023.108187
24. Rodliyah I., Wijayanti R., Hidayat K. N., Dianawati E. A., Sudrajat A., Firmansyah D. Beneficiation of cassiterite from primary tin ores using gravity and magnetic separation. IOP Conference Series: Earth and Environmental Science. 2021. Vol. 882. DOI: 10.1088/1755-1315/882/1/012008
25. Yang J., Song B., Wang L. Cassiterite recovery from tungsten residues through centrifugal gravity concentration. IOP Conference Series: Earth and Environmental Science. 2019. Vol. 300. DOI: 10.1088/1755-1315/300/2/022133
26. Han Z., Golev A., Edraki M. A review of tungsten resources and potential extraction from mine waste. Minerals. 2021. Vol. 11. DOI: 10.3390/min11070701
27. Fedotov P. K., Petukhov V. I., Fedotov K. V., Burdonov A. E. The Dzhidinsky tungsten-and-molybdenum mining and concentration complex aged dump tailings processing trends analysis. Obogashchenie Rud. 2016. No. 1. pp. 40–46.
28. Lu D., Wang Y., Jiang T., Sun W., Hu Y. Study on preconcentration efficiency of wolframite from tungsten ore using gravity and magnetic separations. Physicochemical Problems of Mineral Processing. 2016. Vol. 52. pp. 718–728.
29. Gurman M. A., Shcherbak L. I. Combination methods of hematite-braunite ore processing. Fiziko-tekhnicheskie Problemy Razrabotki Poleznykh Iskopayemykh. 2018. No. 1. pp. 144–159.
30. Fedotov P. K., Senchenko A. E., Fedotov K. V., Burdonov A. E. A study of gold ore for processability by gravity separation techniques. Tsvetnye Metally. 2021. No. 2. pp. 8–16.

31. El-Sayed S., Abdel-Khalek N. A., El-Shatoury E. H., Abdel-Motelib A., Hassan M. S., Abdel-Khalek M. A. Mineralogical study and enhanced gravity separation of gold-bearing mineral, South Eastern Desert, Egypt. Physicochemical Problems of Mineral Processing. 2020. Vol. 56, Iss. 5. pp. 839–848.
32. Chen Q., Yang H., Tong L., Niu H., Zhang F., Chen G. Research and application of a Knelson concentrator: A review. Minerals Engineering. 2020. Vol. 152. DOI: 10.1016/j.mineng.2020.106339
33. Khokhulya M. S., Alekseeva S. A., Cherezov A. A., Fomin A. V. Analyses of grinding and gravity/magnetic separation with a view to optimizing mixed-type processing technology for rare metals. Fiziko-tekhnicheskie Problemy Razrabotki Poleznykh Iskopayemykh. 2021. No. 3. pp. 168–181.
34. Wang Z., Zheng Y., Huang X., Wang X., Peng J., Dai Z. Gravity separation tests of a complex rutile ore. Minerals. 2024. Vol. 14, Iss. 1. DOI: 10.3390/min14010068
35. Hassan E. S. R. E., Mutelet F., Abdel Khalek N. A., Youssef M. A., Abdallah M. M., El Menshawy A. H. Beneficiation and separation of Egyptian tantalite ore. Key Engineering Materials. 2020. Vol. 835. pp. 208–213.
36. Kuskova Ya. V. The development of new constructions of concentration tables in order to improve the efficiency of the enrichment of the mineral resources. Gornyi Informatsionno-analiticheskiy Byulleten'. 2012. No. 9. pp. 393–396.

Language of full-text russian
Full content Buy
Back