Journals →  Chernye Metally →  2024 →  #5 →  Back

Heating and Heat treatment
ArticleName Thermoelectric effect in the sensors of iron and steel industry
DOI 10.17580/chm.2024.05.09
ArticleAuthor A. M. Belenkiy, E. E. Dmitrieva, E. A. Khadzaragova, S. I. Chibizova, A. S. Yakovleva
ArticleAuthorData

North-Caucasian mining and metallurgical institute (State technical university), Vladikavkaz, Russia

A. M. Belenkiy, Dr. Eng., Prof., Dept. of Metallurgy of Non-ferrous Metals and Automation of Metallurgical Processes, e-mail: belenky.bam@yandex.ru

E. A. Khadzaragova, Dr. Eng., Prof., Head of the Dept. of Metallurgy of Non-ferrous Metals and Automation of Metallurgical Processes, e-mail: hadzaragova@mail.ru

 

JSC SPP “Tekhnotsentropribor“, Moscow, Russia
E. E. Dmitrieva, General Director, e-mail: steel@tcpribor.ru

A. S. Yakovleva, Metallurgist Engineer, e-mail: steel@tcpribor.ru

 

University of Science and Technology MISIS, Moscow, Russia
S. I. Chibizova, Cand. Eng., Associate Prof., Dept. of Energy-efficient and Resource-saving Industrial Technologies, e-mail: s_kalimulina@mail.ru

Abstract

The main stages in the development of the thermoelectric effect (t.e.m.f.) are outlined, starting from its discovery at the beginning of the 19th century by Theodor Seebeck to the creation of modern means of measuring various parameters based on its use. Almost the first review of important areas of application of t.e.m.f. is presented. in measuring instruments (MI) for temperature control; heat flow measurements; control of the composition and structure of metals and alloys; control of melt composition; sorting (dividing, sorting) samples by brand; control of decarbonizing activity of baths and gas atmospheres of furnaces; control of heat treatment processes; in power sources for powering equipment and signal sensors. A classification of thermoelectric methods for monitoring the parameters of units and objects of metallurgical production has been developed and presented. On Earth and in space, in fact, the largest number of parameters and quantities are controlled and controlled by devices and systems whose operation is based on this effect. Among the key achievements of mankind, such as the taming of fire, the creation of the wheel, the first automatic devices (trap, crossbow, snare), metallurgy, steam engine, airplane, rocket, television, computer, one should include the discovery of T. Seebeck, which is a new direct source of electricity, and, in some cases, no additional energy is needed to generate it, since in the environment and in thermal units there is usually a temperature difference and waste heat. This discovery ensured the explosive development of science and technology based on diverse and numerous controlled high-temperature processes.

keywords Thermoelectric power, metallurgy, measurement, temperature, composition, structure, operational control, technological process
References

1. Seebek T. J. Magnetishe polarization of metals and minerals. Abhandlungen der Deutschen Akademie der Wissenschaften zur Berlin, 1825.
2. Oersted H. Notiz von neuen elektrisch-magnetischen verfuchen. Ann. Phys. Chem. 1823. pp. 430–432.
3. Smorodinskiy A. Ya. Temperature. Moscow : Nauka, 1981. 160 p.
4. Rudnitskiy A. A. Thermoelectric properties of noble metals and alloys. Moscow : Izdatelstvo AN SSSR, 1956. 146 p.
5. Belenkiy A. M., Dubinskiy M. Yu., Ladygichev M. G., Kisienko M. G., Shchelokov Ya. K. Temperature measurement: theory, practice, experiment. Vol. 2. Temperature measurement in the industry and power engineering. Moscow : Teplotekhnik, 2007. 736 p.
6. Ulanovskiy A. A., Goncharuk T. Yu. Stability examination for the thermocopuple ВР-5/20 with positive thermoelectrode, alloyed by 0.05 % of yttrium oxide nanoparticles. Proceedings of 5th All-Russian and KOOMET countries conference on thermometry problems “Temperature 2015”. St. Petersburg. VNIIM named after D. I. Mendeleev. 2015. p. 223.
7. Segreev S. A., Zaitseva N. G., Plotnikov A. L. Mathematical model of surface roughness forming during scarfing of steels on the base of operating thermal EMF signal. Obrabotka metallov (tekhnologiya, oborudovanie, instrumenty). 2012. No. 3. pp. 20–23.
8. Lukhvich A. S., Karolik A. S., Sharando V. I. Structure relationship of thermoelectric properties and non-destructive testing. Minsk : Navuka i tekhnika, 1990. 192 p.
9. Conejo V., Hernández L., Carreón H. Non-destructive evaluation of aging in welded pipeline X60 and X65 by thermoelectric power means. International Journal of Pressure Vessels and Piping. 2024. Vol. 207. 105103.
10. Guetaz V., Massardier V., Merlin J., Ravaine D., Soler M. Determination of aluminum nitride or free nitrogen in low carbon steel. Steel research. 2001. Vol. 7. No. 7. pp. 245–249.
11. Massardier V., Merlin J., Le Patezour E., Soler M. Mn-C interaction in Fe-C-Mn steels: study by thermoelectric
power and internal friction. Materials Science and Engineering: A. 2005. Vol. 36, Iss. 7. pp. 1745–1755.
12. Steklova E. O., Solovyev S. D., Kim S. L. Use of thermal EMF method in examination of chemical composition and structural state of welded joints. Svarka i diagnostika. 2011. No. 2. pp. 10–11.
13. Carreon H., Barriuso S., Barrerra G. Assessment of blasting induced effects on medical 3316 LVM stainless steel by contacting and non-contacting thermoelectric power techniques. Surface and Coatings Technology. 2012. Vol. 206. No. 11–12. pp. 2941–2946.
14. Kochkin Yu. P., Solntsev A. Yu. Features of thermal EMF variations at small elastic deformation of carbon steel. Obrabotka metallov davleniem. 2016. No. 1 (18). pp. 54–56.
15. Rana R., Massardier V., Singh S. B., Mohandy O. N. Effect of the pre-treatment on copper-alloyed interstitial free steel studied by thermoelectric power measurement. Metallurgical and Materials Transactions A. 2013. Vol. 44, Iss. 6. pp. 186–200.
16. Ortiz N., Curiel F., Lopez V. H. Evaluation of the intergranual corrosion susceptibility or UNS S31803 duplex stainless steel with thermoelectric power measurements. Corrosion Science. 2013. Vol. 69, Iss. 12. pp. 236–244.
17. Luiggi V. J., Valera M., Rodriguez J. P., Prin J. Experimental study of the interaction between recrystallization and precipitation processes of an AA8011 commercial alloy. Journal of Metallurgy. 2014. Vol. 2014. 345945.
18. Belenkiy A. M. Study of the thermal EMF method for steel composition control. Dissertation … of Candidate of technical sciences. Moscow : MISiS, 1969. 98 p.
19. Korzh P. D. Thermoelectric method for control and separation of alloy steels be their grades. Zavodskaya laboratoriya. 1943. Vol. 17. No. 10. pp. 43–45.
20. Korzh P. D., Shadrunova A. P., Giniyatullin I. N. Use of thermoelectric method for determination of carbon content in steel during melting. Zavodskaya laboratoriya. 1968. Vol. 34. No. 12. pp. 1478, 1479.
21. Shadrunova A. P., Belenkiy A. M., Blinov O. M. Thermoelectric methods of examination and control of composition and quality of products in the iron and steel industry. Series 12. Metal science and heat treatment. Moscow, 1975. 12 p.
22. Dmitrieva E. E., Shelkovyi E. A., Yakovleva A. S. Control and measuring equipment for foundry production. Proceedings of the IХ International scientific and practical conference “Energyefficient and resource-saving technologies in the industry. Furnaces. Ecology“. MISiS. December 12–14, 2018. Moscow : MISiS, 2018. pp. 174–179.
23. Kaganov. V. Yu., Blinov O. M., Zilinski H., Belenkiy A. M., Berdyshev V. M. Device for determination of content of impurities in metal. Inventor’s certificate USSR No. 345205 С21C 5/00. Introduced: 09.06.1970. Published: 31.10.1972. Bulletin No. 33.
24. Kaganov. V. Yu., Blinov O. M., Belenkiy A. M. Sensor for determination of content of impurities in metal. Inventor’s certificate USSR No. 252714. Introdused: 22.07.1968. Published: 22.09.1969. Bulletin No 29.
25. Ogura T., Matsuoka M., Fujivara R. Development of silicon sensor for hot metal using thermal electromotive force method. Solid State Ionics. 1990. Vol. 40–41. p. 779–781.
26. Kaganov. V. Yu., Blinov O. M., Supin M. S., Belenkiy A. M. et al. On the problem of C content control in steel via the method of thermal EMF. Izvestiya vuzov. Chernaya metallurgiya. 1980. No. 7. pp. 180–184.
27. Belenkiy A. M., Udalaya K. R., Chibizova S. I. Study of thermoelectrical properties of Fe–C–Si–Mn alloys. Chernye metally. 2018. No. 2. pp. 44–47.
28. Thermoelectric analyzer TAMIS of metals and alloys. URL: https://granat-e.ru/tamis.html. Accessed: 27.04.2024.
29. Sensors PM-641 and PM-642 of “metal worker”. URL: www.aviastek.ru. Accesssed: 27.04.2024.
30. Nicholas N. R. Patent. N4320344 G 01N 25/18/ Fil. US. Metal-alloy thermoelectric characteristic analyzer. Introduced: 01.10.1979. Publised 16.03.1982. 13 p.
31. Kashubskiy A. N., Krushenko G. G. Identification of alloys grades using non-destrucrive control methods. Izvestiya vuzov. Priborostroenie. 2011. Vol. 54. No. 4. pp. 33–35.
32. Krushenko G. G. Use of non-destructive testing for identification of alloys grades in industrial conditions. Dinamika system, mashin i mekhanizmov. 2014. No. 4. pp. 305–308.
33. Fedotov S. G. Development of efficient procedures for decarbonizing annealing of electrotechnical steel on the base of theoretical and experimental examination of heat and mass exchange processes in a strand-type furnaces. Dissertation ... of Candidate of technical sciences. Moscow. 1986. 221 p.
34. Berdyshev V. M., Belenkiy A. M., Blinov O. M., Vitik S. I. et al. Method for thermoelectric autonomous control of temperature and time temporal parameters of heat treatment of cold-rolled metal. Inventor’s certificate USSR No. 1237961 G01 N25/32. Byulleten izobreteniy. 1986. No. 22. 2 p. Introduced: 14.12.1984. Published. 15.06.1986.
35. Jiang B., Liu X., Wang Q., Cui J. et al. Realizing high-efficiency power generation in low-cost PbS-based thermoelectric materials. Energy & Environmental Science. 2020. Vol. 13. Iss. 2. pp. 579–591.
36. Rylnikova M. V., Belenkiy A. M., Bursin A. N. Evaluation of prospectivity for direction with use of thermoelectric generators for electric energy producing in underground mine conditions. Gornyi informatsionno-analiticheskiy byulleten (nauchno-tekhnicheskiy zhurnal). 2015. No. S65. pp. 72–84.

Language of full-text russian
Full content Buy
Back