Журналы →  Tsvetnye Metally →  2024 →  №6 →  Назад

MATERIALS SCIENCE
Название The influence of calcium on phase composition, structure and strengthening of the wrought Al – 3.3 Mg – 0.7 Mn alloy
DOI 10.17580/tsm.2024.06.09
Автор Doroshenko V. V., Aksenov A. A., Strekalina D. M., Gorlov L. E.
Информация об авторе

Moscow Polytechnic University, Moscow, Russia

V. V. Doroshenko, Leading researcher, Dept. of Physics, Candidate of Technical Sciences, e-mail: v.doroshenko@mail.ru
A. A. Aksenov, Chief researcher, Dept. of Physics, Doctor of Technical Sciences, professor, e-mail: a.a.aksenov@mospolytech.ru
D. M. Strekalina, Leading researcher, Dept. of Physics, Candidate of Chemical Sciences, e-mail: d.m.strekalina@mospolytech.ru

 

University of Science and Technology MISIS, Moscow, Russia
L. E. Gorlov, Laboratory assistant-researcher, Dept. of Metallurgy of Non-Ferrous Metals, e-mail: gorlov@edu.misis.ru

Реферат

A study was carried out of the influence of calcium on the phase composition (by calculation methods), microstructure, deformability during hot and cold rolling in different modes and mechanical properties (by comparing practical results with calculated ones) of the wrought Al – 3.3 Mg – 2 Ca – 0.7 Mn alloy. It was revealed that the presence of magnesium affects the size of the phase regions, while an increase in its content reduces the crystallization regions (Al). Alloying with calcium helps to reduce the temperatures of phase transformations, as a result of which, in the presence of magnesium, the formation temperature of the eutectic (Al) + Al4Ca is 35 оC lower than in the Al – Ca binary system. The structure of the experimental alloy in the cast state is distinguished mainly by the presence of double eutectic (Al) + Al4Ca with rare inclusions of the Al6(Mn,Fe) and Al3Mg2 phases. At a quenching temperature of 440 оC, two processes occur in the alloy structure: fragmentation of the calcium-containing eutectic and heterogenization of the aluminum solid solution supersaturated with manganese with the formation of rod-shaped inclusions of the Al6(Mn,Fe) phase. Subsequent holding at a temperature of 550 оC leads to increased fragmentation of crystals of eutectic origin, and the microstructure is distinguished by the presence of a new type of particles corresponding to the ternary compound Al10CaMn2 located mainly near the particles of the Al4Ca phase, which is explained by increased diffusion of manganese from (Al) at higher temperatures. After hot rolling, the grain structure of the alloy with calcium is characterized by smaller elongated grains compared to the alloy without calcium. Mechanical tests of sheets after cold rolling and annealing at a temperature of 400 оC for 1 hour showed an increase in the yield strength of at least 25 MPa, which reflects the advantage of calcium alloying. According to the strength calculation, the direct contribution of calcium eutectic to the total strengthening was 9–10 MPa.
The study was carried out at the expense of the Russian Science Foundation grant No. 23-79-00055 and using the scientific equipment of the SRF Research Chemical Analytical Center of the National Research Center Kurchatov Institute.

Ключевые слова Aluminum, magnesium, calcium, phase diagrams, Thermo-Calc, microstructure, rolling, strength
Библиографический список

1. Liedl G., Bielak R., Ivanova J., Enzinger N. et al. Joining of aluminum and steel in car body manufacturing. Phy. Proc. 2011. Vol. 12(A). pp. 150–156. DOI: 10.1016/j.phpro.2011.03.019
2. Hatch J. E. Aluminum: Properties and physical metallurgy. American Society for Metals (ASM): Ohio, US, 1984. 424 p.

3. Devaraj A., Wang W., Vemuri R., Kovarik L. et al. Grain boundary segregation and intermetallic precipitation in coarsening resistant nanocrystalline aluminum alloys. Acta Mater. 2019. Vol. 165. pp. 698–708. DOI: 10.1016/j.actamat.2018.09.038
4. Mondolfo L. F. Aluminum alloys: Structure and properties. Butterworths : London/Boston, UK, 1976. 982 p.
5. Liu X. Y., Adams J. B. Grain-boundary segregation in Al – 10 Mg alloys at hot working temperatures. Acta Mater. 1998. Vol. 46. pp. 3467–3476. DOI: 10.1016/s1359-6454(98)00038-x
6. Yashin V. V., Aryshensky E. V., Latushkin I. A., Stozharov D. A. Study of kinetics of the supersaturated solid solution decomposition in alloys of the Al – Mg system with transition elements addition. Tsvetnye Metally. 2020. No. 11. pp. 77–84.
7. Drits A. M., Ovchinnikov V. V. Properties of welded joints of sheets made of 1565CH (1565Ч) alloy in combination with other aluminum alloys. Tsvetnye Metally. 2013. No. 11. pp. 84–90.
8. Kishchik M. S., Mochugovskiy A. G., Cuda M., Kishchik A. A., Mikhaylovskaya A. V. Particle stimulated nucleation effect for Al – Mg – Zr – Sc alloys with Ni addition during multidirectional forging. Metals. 2023. Vol. 13. 1499. DOI: 10.3390/met13081499
9. Kishchik A. A., Kishchik M. S., Kotov A. D., Mikhailovskaya A. V. Effect of multi-axial forging on the microstructure and mechanical properties of an alloy of the Al – Mg – Mn – Cr system. Fizika metallov i metallovedenie. 2020. Vol. 121, No. 5. pp. 543–549. DOI: 10.31857/S0015323020050071
10. Che H., Jiang X., Qiao N., Liu X. Effects of Er/Sr/Cu additions on the microstructure and mechanical properties of Al – Mg alloy during hot extrusion. Journal of Alloys and Compounds. 2017. Vol. 708. pp. 662–670. DOI: 10.1016/j.jallcom.2017.01.039
11. Kotov A. D., Mochugovskiy A. G., Mosleh A. O., Kishchik A. A. et al. Microstructure, superplasticity, and mechanical properties of Al – Mg – Er – Zr alloys. Materials Characterization. 2022. Vol. 186. 111825. DOI: 10.1016/j.matchar.2022.111825
12. Feng H.-Q., Yang Zh.-B., Bai Y.-T., Zhang L., Liu Y.-L. Study on the microstructures of Al – 2,5 % Mn alloy. Mater. Res. Express. 2020. Vol. 7. 066527. DOI: 10.1088/2053-1591/ab9ae8
13. Czerwinski F. Critical assessment 36: Assessing differences between the use of cerium and scandium in aluminium alloying. Mater. Sci. Tech. 2020. Vol. 36, Iss. 3. pp. 255–263. DOI: 10.1080/02670836.2019.1702775
14. Kubináková E., Danielik V., Híveš J. Al – Zr alloys synthesis: characterization of suitable multicomponent low-temperature melts. J. Mater. Res. Tech. 2020. Vol. 9, Iss. 1. pp. 594–600. DOI: 10.1016/j.jmrt.2019.10.088
15. Okamoto H., Schlesinger M. E., Mueller E. M. ASM Handbook. Vol. 3: Alloy phase diagrams. ASM International : Ohio, US, 2016. DOI: 10.31399/asm.hb.v03.9781627081634
16. Algendy A. Y., Liu K., Chen X. G. Evolution of dispersoids during multistep heat treatments and their effect on rolling performance in an Al – 5 % Mg – 0,8 % Mn alloy. Mater. Char. 2021. Vol. 181. 111487. DOI: 10.1016/j.matchar.2021.111487
17. Slyudova A. A., Trudonoshin A. I., Prach E. L., Lisovskiy V. A. The Structure of Al – Mg – Si Casting alloys Modified by Lithium and Scandium. Tsvetnye Metally. 2021. No. 11. pp. 65–70.
18. Deev V., Prusov E., Shurkin P., Ri E. et al. Effect of La addition on solidification behavior and phase composition of cast Al – Mg – Si alloy. Metals. 2020. Vol. 10, Iss. 12. 1673. DOI: 10.3390/met10121673
19. Zhang X., Li L., Wang Zh., Peng H. et al. Ultrafine-grained Al – La – Mg – Mn alloy with superior thermal stability and strength-ductility synergy. Mater. Sci. Eng.: A. 2023. Vol. 873. 145035. DOI: 10.1016/j.msea.2023.145035
20. Lv H., Peng P., Feng T., Gao H. et al. High-performance co-continuous Al – Ce – Mg alloy with in-situ nano-network structure fabricated by laser powder bed fusion. Additive Manufacturing. 2022. Vol. 60(A). 103218. DOI: 10.1016/j.addma.2022.103218
21. Belov N. A., Naumova E. A., Bazlova T. A., Doroshenko V. V. Phase composition and hardening of castable Al – Ca – Ni – Sc alloys containing 0.3% Sc. Metal Science and Heat Treatment. 2017. Vol. 59. pp. 76–81. DOI: 10.1007/s11041-017-0106-0
22. Akopyan T. K., Belov N. A., Letyagin N. V., Cherkasov S. O., Nguen X. D. Description of the new eutectic Al – Ca – Cu system in the aluminum corner. Metals. 2023. Vol. 13. 802. DOI: 10.3390/met13040802
23. Belov N., Naumova E., Akopyan T. Eutectic alloys based on the Al – Zn – Mg – Ca system: microstructure, phase composition and hardening. Materials Science and Technology. 2017. Vol. 33. pp. 656–666. DOI: 10.1080/02670836.2016.1229847
24. Tian L., Kim H., Anderson I., Russell A. The microstructure-strength relationship in a deformation processed Al – Ca composite. Mater. Sci. Eng.: A. 2013. Vol. 570. pp. 106–113. DOI: 10.1016/j.msea.2013.01.062
25. Klochkova K. V., Simonova L. A., Bredinin I. S. Predicting alloy strength by neural network modeling: Al – Ca – Mn alloys. Russian Engineering Research. 2023. Vol. 43, Iss. 3. pp. 329–333. DOI: 10.3103/S1068798X23040305
26. Grushko O. E., Ovsyannikov B. V., Ovchinnikov V. V. Calcium as an element for microalloying of wrought aluminum alloys: monograph. Moscow, Vologda : Infra-Inzheneriya, 2021. 296 p.
27. Doroshenko V., Shurkin P., Sviridova T., Fortuna A., Shkaley I. Phase composition and microstructure of cast Al – 6 % Mg – 2 % Ca – 2 % Zn alloy with Fe and Si additions. Metals. 2023. Vol. 13. 1584. DOI: 10.3390/met13091584
28. GOST 11069–2019. Primary aluminium. Grades. Introduced: 01.06.2020.
29. GOST 804–93. Primary magnesium ingots. Specifications. Introduced: 01.01.1997.
30. GOST 53777–2010. Master alloys of aluminium. Specifications. Introduced: 01.07.2010.
31. Doroshenko V. V., Naumova E. A., Aksenov A. A., Shcherbakova O. O., Finogeev A. S. Structure and mechanical properties of rolled sheets of Al – 2.5 Ca –2.5 Mg alloy doped with scandium and zirconium. Fizika metallov i metallovedenie. 2023. Vol. 124, No. 7. pp. 616–621. DOI: 10.31857/S0015323023600272
32. Thermo-Calc Software. Data Base TTAL5. Version 3.0. Available at: http://www.thermocalc.com (accessed: 15.05.2023).
33. Belov N. A., Naumova E. A., Akopyan T. K. Eutectic alloys based on aluminum: new alloying systems. Moscow : ID Ruda i Metally, 2016. 256 p.
34. Belov N. A., Naumova E. A., Akopyan T. K., Doroshenko V. V. Phase diagram of the Al – Ca – Fe – Si system and its application for the design of aluminum matrix composites. JOM. 2018. Vol. 70, Iss. 11. pp. 2710–2715. DOI: 10.1007/s11837-018-2948-3
35. Gorelik S. S., Skakov Yu. A., Rastorguev L. N. X-ray and electron-optical analysis: textbook. 3rd edition. Moscow : MISiS, 1994. 328 p.
36. Kontio A., Coppens P. New study of the structure of MnAl6. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials. 1981. Vol. B37. pp. 433–435. DOI: 10.1107/S0567740881003191
37. Belov N. A., Naumova E. A., Akopyan T. K., Doroshenko V. V. Design of multicomponent aluminium alloy containing 2wt% Ca and 0.1wt% Sc for cast products. Journal of Alloys and Compounds. 2018. Vol. 762. pp. 528–536. DOI: 10.1016/j.jallcom.2018.05.281
38. Korotkova N. O., Doroshenko V. V., Khabibulina A. I., Aksenov A. A. Comparative analysis of specific electrical resistivity of sheets of Al – 1.5 % Mn and Al – 1.5 % Mn – 0.5 % Ca alloys. Tsvetnye Metally. 2023. No. 7. pp. 56–62.
39. Sun P., Yang H., Huang R., Zhang Y. et al. The effect of rolling temperature on the microstructure and properties of multi pass rolled 7A04 aluminum alloy. Journal of Materials Research and Technology. 2023. Vol. 25. pp. 3200–3211. DOI: 10.1016/j.jmrt.2023.06.123
40. Wang Y., Yang B., Gao M., Zhao E., Guan R. Microstructure evolution, mechanical property response and strengthening mechanism induced by compositional effects in Al – 6 Mg alloys. Materials & Design. 2022. Vol. 220. 110849. DOI: 10.1016/j.matdes.2022.110849
41. Zhou D., Zhang X., Wang H., Li Y. et al. Influence of Mg on tensile deformation behavior of high Mg-content Al – Mg alloys. International Journal of Plasticity. 2022. Vol. 157. 103405. DOI: 10.1016/j.ijplas.2022.103405
42. Baek M.-S., Shah A. W., Kim Y.-K., Kim Sh.-K. et al. Microstructures, tensile properties, and strengthening mechanisms of novel Al – Mg alloys with high Mg content. Journal of Alloys and Compounds. 2023. Vol. 950. 169866. DOI: 10.1016/j.jallcom.2023.169866
43. Zhu A. W., Starke E. A. Strengthening effect of unshearable particles of finite size: a computer experimental study. Acta Materialia. 1999. Vol. 47, Iss. 11. pp. 3263–3269. DOI: 10.1016/S1359-6454(99)00179-2
44. Zhang X., Li L., Wang Zh., Peng H. et al. A novel high-strength Al – La – Mg – Mn alloy for selective laser melting. Journal of Materials Science & Technology. 2023. Vol. 137. pp. 205–214. DOI: 10.1016/j.jmst.2022.07.046

Language of full-text русский
Полный текст статьи Получить
Назад