Abstract |
As reserves of high-quality ores decrease, conventional approaches to metal extraction, such as pyrometallurgy, have become less economically and practically feasible. In this regard, new technological processes, such as bacterial and chemical leaching, are under study to process low-quality minerals. Bacterial and chemical leaching is a technology kept evolving and efficiently used to extract copper from secondary sulfide minerals. However, some minerals, including chalcopyrite, are characterized by increased resistance to the bio-treatment process. This review examines ways to increase the efficiency of bacterial and chemical leaching of chalcopyrite, which include the use of thermophilic acidophilic chemolithotrophic microorganisms, bioleaching with mixed cultures, the use of surfactants, various catalyzing components, crushing and abrasion, additional aeration, as well as the effects of ultrasound and microwave. Most of the described methods for improving kinetics of bioleaching have proved successful; however, there are factors limiting their use. So, the use of chlorine-, iodine-containing substances and L-cysteine may have a subtle catalytic effect in the process of bioleaching, but will require a high concentration of the introduced components. Surfactants in small doses can significantly increase the rate and efficiency of the sulfide dissolution during bacterial and chemical leaching. The use of silver ions is the most efficient way to catalyze the biooxidation of chalcopyrite by moderate thermophilic microorganisms. Research shows that physical methods of improving kinetics are effective, but there are not enough publications on this topic yet. |
References |
1. Zhong S., Li Y. An improved understanding of chalcopyrite leaching kinetics and mechanisms in the presence of NaCl. Journal of Materials Research and Technology. 2019. Vol. 8, No. 4. pp. 3487–3494. DOI: 10.1016/j.jmrt.2019.06.020 2. Cao S., Zheng X., Nie Z., Zhou Y. et al. Mechanical activation on bioleaching of chalcopyrite: a new insight. Minerals. 2020. Vol. 10, No. 9. DOI: 10.3390/min10090788 3. Huang Z., Feng S., Tong Y., Yang H. Enhanced “contact mechanism” for interaction of extracellular polymeric substances with low-grade copperbearing sulfide ore in bioleaching by moderately thermophilic Acidithiobacillus caldus. Journal of Environmental Management. 2019. Vol. 242. pp. 11–21. DOI: 10.1016/j.jenvman.2019.04.030 4. Toledo A. G. R., Costa R. B., Delforno T. P., Arena F. A. et al. Exploring chalcopyrite (bio)leaching mechanisms under thermophilic conditions. Minerals Engineering. 2023. Vol. 204. DOI: 10.1016/j.mineng.2023.108417 5. Sun J., He X., Le Y., Al-Tohamy R., Ali S. S. Potential applications of extremophilic bacteria in the bioremediation of extreme environments contaminated with heavy metals. Journal of Environmental Management. 2024. Vol. 352. DOI: 10.1016/j.jenvman.2024.120081 6. Deshpande A. S., Kumari R., Prem Rajan A. A delve into the exploration of potential bacterial extremophiles used for metal recovery. Global J. Environ. Sci. Manage. 2018. Vol. 4, No. 3. pp. 373–386. DOI: 10.22034/gjesm.2018.03.010 7. Norris P. R., Laigle L., Ogden T. J., Gould O. J. P. Selection of thermophiles for base metal sulfide concentrate leaching. Part I: Effect of temperature on copper concentrate leaching and silver recovery. Minerals Engineering. 2017. Vol. 106. pp. 7–12. DOI: 10.1016/j.mineng.2016.12.003 8. Cancho L., Blázquez M. L., Ballester A., González F. et al. Bioleaching of a chalcopyrite concentrate with moderate thermophilic microorganisms in a continuous reactor system. Hydrometallurgy. 2007. Vol. 87, No. 3-4. pp. 100–111. DOI: 10.1016/j.hydromet.2007.02.007 9. Manesh M. J. H., Willard D. J., Lewis A. M., Kelly R. M. Extremely thermoacidophilic archaea for metal bioleaching: What do their genomes tell Us? Bioresource Technology. 2024. Vol. 391. DOI: 10.1016/j.biortech.2023.129988 10. Ma L., Wang X., Tao J., Feng X. et al. Bioleaching of the mixed oxidesulfide copper ore by artificial indigenous and exogenous microbial community. Hydrometallurgy. 2017. Vol. 169. pp. 41–46. DOI: 10.1016/j.hydromet.2016.12.007 11. Ríos D., Bellenberg S., Christel S., Lindblom P. et al. Potential of single and designed mixed cultures to enhance the bioleaching of chalcopyrite by oxidation-reduction potential control. Hydrometallurgy. 2024. Vol. 224. DOI: 10.1016/j.hydromet.2023.106245 12. Pathak A., Morrison L., Healy M. G. Catalytic potential of selected metal ions for bioleaching, and potential techno-economic and environmental issues: A critical review. Bioresource Technology. 2017. Vol. 229. pp. 211–221. DOI: 10.1016/j.biortech.2017.01.001 13. Li Q., Luo J., Xu R., Yang Y. et al. Synergistic enhancement effect of Ag+ and organic ligands on the bioleaching of arsenic-bearing gold concentrate. Hydrometallurgy. 2021. Vol. 204. DOI: 10.1016/j.hydromet.2021.105723 14. Xia J., Song J., Liu H., Nie Z. et al. Study on catalytic mechanism of silver ions in bioleaching of chalcopyrite by SR-XRD and XANES. Hydrometallurgy. 2018. Vol. 180. pp. 26–35. DOI: 10.1016/j.hydromet.2018.07.008 15. Zhao H., Yang C., Zhang X., Zhang Y. et al. Chapter 6: Chalcopyrite bioleaching catalyzed by silver. Biohydrometallurgy of Chalcopyrite. 2021. pp. 183–209. DOI: 10.1016/s0304-386x(98)00070-x 16. Gomez E., Ballester A., Blazquez M. L., Gonzalez F. Silver-catalysed bioleaching of a chalcopyrite concentrate with mixed cultures of moderately thermophilic microorganisms. Hydrometallurgy. 1999. Vol. 51, No. 1. pp. 37–46. DOI: 10.1016/S0304-386X(98)00070-X 17. Ballester A., Gonzales F., Blazguez M. L., Mier J. L. The influence of various ions in the bioleaching of metal sulphides. Hydrometallurgy. 1990. Vol. 23. pp. 221–235. DOI: 10.1016/0304-386x(90)90006-n 18. Huynh D., Giebner F., Kaschabek S. R., Rivera-Araya J. et al. Effect of sodium chloride on Leptospirillum ferriphilum DSM 14647T and Sulfobacillus thermosulfidooxidans DSM 9293T: Growth, iron oxidation activity and bioleaching of sulfidic metal ores. Minerals Engineering. 2019. Vol. 138. pp. 52–59. DOI: 10.1016/j.mineng.2019.04.033 19. Chen W., Tang H., Yin S., Wang L. et al. Copper recovery from low-grade copper sulfides using bioleaching and its community structure succession in the presence of Sargassum. Journal of Environmental Management. 2024. Vol. 349. DOI: 10.1016/j.jenvman.2023.119549 20. Liu W., Yang H., Song Y., Tong L. Catalytic effects of activated carbon and surfactants on bioleaching of cobalt ore. Hydrometallurgy. 2015. Vol. 152. pp. 69–75. DOI: 10.1016/j.hydromet.2014.12.010 21. Zhang R., Sun C., Kou J., Zhao H. et al. Enhancing the leaching of chalcopyrite using Acidithiobacillus ferrooxidans under the induction of surfactant Triton X-100. Minerals. 2019. Vol. 9, No. 1. pp. 1–15. DOI: 10.3390/min9010011 22. Zhang H., Wei D., Liu W., Hou D. et al. Enhancement mechanism of polyoxyethylene nonyl phenyl ether on the bioleaching of chalcopyrite. Minerals Engineering. 2021. Vol. 173. DOI: 10.1016/j.mineng.2021.107237 23. Zhang W., Gu S. Catalytic effect of activated carbon on bioleaching of low-grade primary copper sulfide ores. Transactions of Nonferrous Metals Society of China. 2007. Vol. 17, No. 5. pp. 1123–1127. DOI: 10.1016/S1003-6326(07)60236-2 24. Konadu K. T., Sakai R., Mendoza D. M., Chuaicham C. et al. Effect of carbonaceous matter on bioleaching of Cu from chalcopyrite ore. Hydrometallurgy. 2020. Vol. 195. DOI: 10.1016/j.hydromet.2020.105363 25. Kordloo M., Abdollahi H., Gharabaghi M., Yadollahi A. et al. Evaluation of the effects of L-cysteine addition on the bioleaching of zinc and cadmium from sphalerite flotation concentrate. Minerals Engineering. 2023. Vol. 204. DOI: 10.1016/j.mineng.2023.108379 26. Li S., Zhong H., Hu Y., Zhao J. et al. Bioleaching of a low-grade nickel–copper sulfide by mixture of four thermophiles. Bioresource Technology. 2014. Vol. 153. pp. 300–306. DOI: 10.1016/j.biortech.2013.12.018 27. He Z., Gao F., Zhong H., Hu Y. Effects of L-cysteine on Ni–Cu sulfide and marmatite bioleaching by Acidithiobacillus caldus. Bioresource Technology. 2009. Vol. 100, No. 3. pp. 1383–1387. DOI: 10.1016/j.biortech.2008.08.038 28. Crundwell F. K., Van Aswegen A., Bryson L. J., Biley C. et al. The effect of visible light on the dissolution of natural chalcopyrite (CuFeS2) in sul phuric acid solutions. Hydrometallurgy. 2015. Vol. 158. DOI: 10.1016/j.hydromet.2015.10.014 29. Crundwell F. K., Bryson L. J., van Aswegen A., Knights B. D. H. Effect of chopped light on the dissolution and leaching of chalcopyrite. Minerals Engineering. 2021. Vol. 160. DOI: 10.1016/j.mineng.2020.106703 30. Zhao C., Yang B., Wang X., Zhao H. et al. Catalytic effect of visible light and Cd2+ on chalcopyrite bioleaching. Transactions of Nonferrous Metals Society of China. 2020. Vol. 30, No. 4. pp. 1078–1090. DOI: 10.1016/S1003-6326(20)65279-7 31. Zhao C., Yang B., Liao R., Hong M. et al. Catalytic mechanism of manganese ions and visible light on chalcopyrite bioleaching in the presence of Acidithiobacillus ferrooxidans. Chinese Journal of Chemical Engineering. 2022. Vol. 41. pp. 457–465. DOI: 10.1016/j.cjche.2021.10.009 32. Chen J., Tang D., Zhong S., Zhong W. et al. The influence of micro-cracks on copper extraction by bioleaching. Hydrometallurgy. 2020. Vol. 191. DOI: 10.1016/j.hydromet.2019.105243 33. Zhong W., Zhong S., Tang D., Chi X. et al. Understanding the mechanism of microcrack-enhanced bioleaching of copper. Hydrometallurgy. 2023. Vol. 218. DOI: 10.1016/j.hydromet.2023.106045 34. Dong Y. B., Lin H., Zhou S., Xu X. et al. Effects of quartz addition on chalcopyrite bioleaching in shaking flasks. Minerals Engineering. 2013. Vol. 46–47. pp. 177–179. DOI: 10.1016/j.mineng.2013.04.014 35. Guezennec A., Joulian C., Jacob J., Archane A. et al. Influence of dissolved oxygen on the bioleaching efficiency under oxygen enriched atmosphere. Minerals Engineering. 2017. Vol. 106. pp. 64–70. DOI: 10.1016/j.mineng.2016.10.016 36. Witne J. Y., Phillips C. V. Bioleaching of Ok Tedi copper concentrate in oxygen- and carbon dioxide-enriched air. Minerals Engineering. 2001. Vol. 14, No. 1. pp. 25–48. DOI: 10.1016/s0892-6875(00)00158-8 37. Hernández I. A., Díaz H. L. M., Morales F. J. F., Romero L. R. et al. Bioleaching of metal polluted mine tailings aided by ultrasound irradiation pretreatment. Environmental Technology & Innovation. 2023. Vol. 31. DOI: 10.1016/j.eti.2023.103192 38. Swamy K. M., Sukla L. B., Narayana K. L., Kar R. N. et al. Use of ultrasound in microbial leaching of nickel from laterites. Ultrason. Sonochem. 1995. Vol. 2. pp. 5–9. DOI: 10.1016/1350-4177(94)00003-B 39. Musikhin V. O., Kioresku A. V. Influence of a combined impact of microwave emission and ultrasound on a mixed culture of chemolithotrophic indigenous microorganisms of the Kamchatka nickel-bearing province. Vestnik DVO RAN. 2018. No. 6. pp. 159–165. DOI: 10.25808/08697698.2018.202.6.018 40. Kioresku A. V. Bioleaching of nickel, copper and cobalt from ore pretreated by microwave emissions. Uspekhi sovremennogo estestvoznaniya. 2019. No. 12. pp. 51–56. |