Журналы →  Tsvetnye Metally →  2024 →  №7 →  Назад

HEAVY NON-FERROUS METALS
Название Studies on the autoclave oxidation leaching technology for a zinc concentrate
DOI 10.17580/tsm.2024.07.05
Автор Kositskaya T. Yu., Lapin A. Yu., Varganov M. S., Fatkhutdinova O. A.
Информация об авторе

LLC Research Center Hydrometallurgy, Saint Petersburg, Russia
T. Yu. Kositskaya, Senior Researcher, Candidate of Technical Sciences, e-mail: kositskaya-t@gidrometall.ru
A. Yu. Lapin, Chief Researcher, Candidate of Technical Sciences, e-mail: lapin-a@gidrometall.ru

 

JSC Chelyabinsk Zinc Plant, Chelyabinsk, Russia
M. S. Varganov, Head of the Technical Administration, e-mail: mkv@zinc.ru
O. A. Fatkhutdinova, Chief Technologist of the Technical Administration, e-mail: oaf@zinc.ru

Реферат

A currently relevant issue is processing of sulphide zinc concentrates of various compositions. In addition to the conventional processing technology for such raw materials, providing for the use of cinder annealing and atmospheric leaching, there is a pure hydrometallurgical method based on autoclave oxidation leaching of the concentrate (temperature is 150 oC, oxygen pressure is 0.7 MPa), including a transition of the bulk of sulphide sulphur into elemental sulphur. The article presents the studies on two-stage countercurrent autoclave oxidation leaching of the zinc concentrate from one of deposits of Russia and describes a principal flow chart of its processing. Modern autoclave equipment was used to experimentally test main parameters of each stage of leaching. The authors determined mutual influence of parameters of one process stage on indicators of the other stage, resulting in obtaining parameters of both stages, ensuring a high recovery rate of zinc into a product solution (>98 %) and a high selection rate of zinc and iron during autoclave oxidation leaching. There are options found to produce a zinc product solution with a low content of iron (≤1 g/l) and sulfuric acid (5 g/l) to simplify a process flow of cleaning before the electrolytic deposition of zinc. The article presents studies on compositions of solid products, resulting from autoclave leaching. It has been determined that main components of autoclave sediments, besides elemental sulphur, are secondary ferrous phases — crystalline jarosite-type compounds. Obtaining crystalline sediments provides for achieving high sedimentation characteristics of slurry of the 1st leaching stage, simplifying a process flow diagram of its dewatering.

Ключевые слова Zinc, iron, sphalerite, autoclave oxidation leaching, oxygen, elemental sulphur, oxidation kinetics
Библиографический список

1. Snurnikov A. P. Hydrometallurgy of zinc. Moscow : Metallurgiya, 1981. 220 p.
2. Klyayn S. E., Kozlov P. A., Naboychenko S. S. Recovery of zinc from the crude ore material. Yekaterinburg : UGTU–UPI, 2009. 491 p.
3. Wood J., Coveney J., Helin G., Xu L., Xincheng S. The Outotec® direct zinc smelting process. Proceedings of EMC 2015: European Metallurgical Сonference. Germany, 2015.
4. Kania H., Saternus M. Evaluation and current state of primary and secondary zinc production. Applied Sciences. 2023. Vol. 13, No. 3. 2003. DOI: 10.3390/app13032003
5. Berdiyarov B., Matkarimov S. Method for oxidative roasting of sulfide zinc concentrates in an air oxygen stream in fluidized bed furnaces. IOP Conference Series: Earth and Environmental Science. 2023. Vol. 1142. 012035. DOI: 10.1088/1755-1315/1142/1/012035
6. Naboychenko S. S., Ni L. P., Shneerson Ya. M., Chugaev L. V. Autoclave hydro metallurgy of non-ferrous metals. Yekaterinburg : UGTU–UPI, 2002. 940 p.
7. Naboychenko S. S., Shneerson Ya. M., Kalashnikova M. I., Chugaev L. V. Autoclave hydrometallurgy of non-ferrous metals. Vol. 2. Autoclave technology in non-ferrous metallurgy. Yekaterinburg : UGTU–UPI,
2009. 612 p.
8. Kolmachikhina E. B., Lugovitskaya T. N., Tretyak M. A., Naumov K. D. Physical and chemical regularities of zinc sulfide concentrate pressure leaching in the presence of lignosulfonate. Izvestiya vuzov. Tsvetnaya metallurgiya. 2021. Vol. 7, No. 5. pp. 13–24. DOI: 10.17073/0021-3438-2021-5-13-24
9. Lugovitskaya T. N., Kolmachikhina E. B., Naboychenko S. S. On the issue of applying surfactants to intensify processes of high-temperature autoclave leaching of sulphide minerals. Modern technologies of producing non-ferrous metals : proceedings of the International Scientific Conference devoted to the eightieth birthday of S. S. Naboychenko. Yekaterinburg, 24–25 March 2022. Yekaterinburg : Publishing House of Ural University, 2022. pp. 59–64.
10. Naboychenko S. S. Autoclave recovery of copper-zinc and zinc concentrates. Moscow : Metallurgiya, 1989. 112 p.
11. Ozberk E., Bolton G., Masters I. The Sherritt zinc pressure leach process; 15 years after commercialization. The future of lead and zinc. Asia and world. Beijing, China. 19–23 May 1996.
12. Sadeghi N., Moghaddam J., Ilkhchi M. O. Determination of effective parameters in pilot plant scale direct leaching of a zinc sulfide concentrate. Physicochemical Problems of Mineral Process. 2017. Vol. 53, No. 1. pp. 601–616. DOI: 10.5277/ppmp170147
13. G. Zh. Zhunusova, O. A. Kalyanova. Method of recovery of low-grade sulfide zinc concentrates. Patent KZ, No. 32638. Applied: 24.06.2016. Published: 05.02.2018. Bulletin No. 5.
14. Sadykov S., Kalanchey R., McConaghy E., Stiksma J. et al. Commercialization of Dynatec zinc pressure leach process at Kazakhmys Corporation in Balkhash, Kazakhstan. Pressure Hydrometallurgy 2004: 34th Annual Hydrometallurgy Meeting. Banff, Alberta, Canada. October 23–27, 2004. pp. 929–949.
15. Jankola W. A. Zinc pressure leaching at Cominco. Hydrometallurgy. 1995. Vol. 39, No. 1-3. pp. 63–70. DOI: 10.1016/0304-386X(95)00045-I
16. Krysa B. D. Zinc pressure leaching at HBMS. Hydrometallurgy. 1995. Vol. 39, No. 1-3. pp. 71–77. DOI: 10.1016/0304-386X(95)00046-J
17. Zhukov V. V. et al. Kinetics of a zinc direct pressure leaching model. Issues of subsoil use: International Forum – Contest for Young Scientists, Saint Petersburg, 19–21 April 2017 : proceedings. Part 1. Saint Petersburg, 2017. pp. 185–187.
18. Sadykov S. B. Autoclave recovery of low-grade zinc concentrates. Yekaterinburg : Ural Branch of the Russian Academy of Sciences, 2006. 582 p.
19. Fupeng Liu, Zhihong Liu, Yuhu Li, Wilson B. P., Lundstrom M. Behavior of gallium and germanium associated with zinc sulfide concentrate in oxygen pressure leaching. Physicochemical Problems of Mineral Process. 2017. Vol. 53, No. 2. pp. 1047–1060.
20. Soloveva G. V., Kolmachikhina E. B., Mamyachenkov S. V. Thermodynamic analysis of zinc sulfide dissolution stoichiometry in sulfuric acid solution with oxygen. Izvestiya vuzov. Tsvetnaya metallurgiya. 2020. No. 4. pp. 22–28. DOI: 10.17073/0021-3438-2020-4-22-28
21. Shpaer V. M., Kalashnikova M. I. Mathematical modeling of macrokinetics of leaching. Tsvetnye Metally. 2011. No. 8-9. pp. 165–171.
22. Talmage W. P., Fitch E. B. Determining thickener unit areas. Industrial and Engineering Chemistry. 1955. Vol. 47, No. 1. pp. 38–41. DOI: 10.1021/ie50541a022
23. Reference book of ore beneficiation. Vol. 2. Moscow ; Leningrad, 1964. 1008 p.

Language of full-text русский
Полный текст статьи Получить
Назад